为什么这部电影的豆瓣评分我不认可?—— 一点数据分析的视角

本贴最后更新于 2662 天前,其中的信息可能已经渤澥桑田

源代码: https://github.com/cqcn1991/movie-compare

文中涉及的交互式散点图: https://cdn.rawgit.com/cqcn1991/movie-compare/master/clusters.html

之前其实写过这个问题 [1],不过没有在这里分享过,这里简单写一下,希望能对大家有所帮助

1. 我们所讨论“评分”到底是什么?

刺客聂影娘来说

评分虽然不错,但能看到评价差异很大的评价,而且都有不少人赞

于是我们会问:这部电影的豆瓣评分靠谱吗?上面这些人他们谁是对的,谁是错的?是不是有水军?

然而,同样的评分,却发现其他的电影并不如此,比如我 11

虽然也有好评、中评,但差评明显少多了

仔细观察,会发现两者的评分分布并不相同

● 刺客聂隐娘:同时有不少人觉得不错/较差,在 1 星和 5 星有不少的分布。

● 我 11:大家都觉得比较不错,所以评分集中在了 3 星-4 星

也就是说,尽管两者(平均)分数相同,但是背后的看法非常不同,评分差异很大,这也正好对应了上面截然相反的热评的情况。

我们可以用方差来衡量评分分布的差异,计算方法如下

也就是计算 评分偏离平均分的程度。下文使用标准差(STD),由方差开方即可。

用近几年的国内上映的电影,做出标准差(STD) - 豆瓣评分(Rating )散点分布图。为了便于比较,做标准差 97% 范围线。

散点图可见 https://cdn.rawgit.com/cqcn1991/movie-compare/master/clusters.html

可以看到两者 STD 差别确实很大。仔细看上面的评论,也能发现分歧的原因 —— 刺客聂隐娘因为画面水平和讲故事的水平相差很大,大家侧重不同,所以也就产生了评价差异。

也就是说,我们所说的豆瓣评分,只是一个平均分,并不能反映内在评价差异很大的情况

另外,在这幅图上也能发现其他有争议、STD 很高的电影,比如大鱼海棠、后会无期等等,这里不再赘述,具体分析可见[1]。

2. 这意味着什么?

这意味着什么?不妨从另一个例子来理解

日赚 1.6 亿!腾讯员工人均月薪 6.3 万 ...以此计算,截至 2017 年 3 月 31 日止 3 个月,腾讯员工平均月酬金=742300 万/(39258*3),约为 6.3 万元。作为一家人员接近 4 万的公司,腾讯这样大手笔给员工发薪酬引发业界震惊。一位腾讯内部人士则指出,酬金不能只看平均的。腾讯的雇员也包括腾讯 CEO 马化腾、总裁刘炽平等高管,你要是把万达董事长王健林的收入和你平均一下,你的收入也高很多。 http://digi.163.com/17/0520/06/CKS04PC2001680NE.html

这样其实大家也就明白了

豆瓣评分是平均分。当评分分布的差别很大的时候,这个平均分的意义就有限了,就像上面这个人均收入的例子一样。

不过,为什么很多时候,我们觉得豆瓣电影的评分有用呢?因为大部分时候,大家的看法是比较一致的(都觉得好看/不好看),就像上面的我 11 一样。

明白这点之后,我感觉轻松了不少

因为以前我总纠结电影的分数。因为自己的看法和别人不同,所以担心自己是错的、不敢表达自己的想法。现在,我明白原来还有很多人的看法和我一样(评分分布上那些打其他分的比例),只是人比较少而已。

单单谈论平均分高低的问题也在于此 —— 预先假设了对于一部电影,其分数应该是唯一的。但实际上,大家对电影可以有不同的看法,不是说你是对的,那我就是错的。

3. 总结

最后,回答开头的问题 —— 你是否认可豆瓣的评分?

大多数时候,我是认可的,因为大多数电影,大家的看法很接近,平均分是很有效的。但是当内在评分差别很大的时候,平均分的意义有限,也就无从讨论对其认可不认可了。因为对电影的看法本身可以是多元的。

那么,有什么办法能解决这个问题,帮大家更好的理解豆瓣评分呢?

一种可能的做法,是给豆瓣评分旁边加上一个小标签。比如,对 STD 特别大的电影,在旁边加个“分歧提醒”标签,注明 “这部电影的评价差异水平达到了前 3%,平均分的参考意义较为有限”,进一步还可以分开展示好评/差评,向用户解释评价差异具体如何。这样或许能减少一些人们对(平均)评分的疑虑。

4. 其他问题补充

(1) 没考虑水军

对于评分,当然应该考虑水军的影响。

但是我们所谓的水军,**究竟是虚假帐号评分,还仅仅只是别人的评价和我不同而已?**就比如有的人,确实是喜欢刺客聂隐娘的画面,而对故事没那么看重。更重要的是,只考虑水军,没有办法解释剔除水军之后,分歧依然很大的现象。

(2) 豆瓣不是简单的平均分, 是加权吧?

这并没有本质影响。因为问题核心在于,单个指标(无论是平均数/中位数/加权)难以表现内部差异。

可以假想一部电影,在剔除水军之后,50% 1 星, 50% 5 星,怎么理解?用哪个分数,都说明不了问题。又比如上面人均收入的例子,用算法再怎么算,也没办法用一个工资同时表达高管和新入职员工的水平。

最后,关于这个问题更详细的分析,见 [1]。

[1] 为什么这部电影的豆瓣评分我不认可?-- 一点数据分析的视角 - 知乎专栏

  • Python

    Python 是一种面向对象、直译式电脑编程语言,具有近二十年的发展历史,成熟且稳定。它包含了一组完善而且容易理解的标准库,能够轻松完成很多常见的任务。它的语法简捷和清晰,尽量使用无异义的英语单词,与其它大多数程序设计语言使用大括号不一样,它使用缩进来定义语句块。

    541 引用 • 672 回帖
  • 数据分析
    11 引用 • 8 回帖 • 1 关注
  • 豆瓣
    6 引用 • 19 回帖

相关帖子

欢迎来到这里!

我们正在构建一个小众社区,大家在这里相互信任,以平等 • 自由 • 奔放的价值观进行分享交流。最终,希望大家能够找到与自己志同道合的伙伴,共同成长。

注册 关于
请输入回帖内容 ...