《Java8 实战》- 第五章读书笔记(使用流 Stream-02)

本贴最后更新于 2289 天前,其中的信息可能已经沧海桑田

付诸实战

在本节中,我们会将迄今学到的关于流的知识付诸实践。我们来看一个不同的领域:执行交易的交易员。你的经理让你为八个查询找到答案。

  1. 找出 2011 年发生的所有交易,并按交易额排序(从低到高)。
  2. 交易员都在哪些不同的城市工作过?
  3. 查找所有来自于剑桥的交易员,并按姓名排序。
  4. 返回所有交易员的姓名字符串,按字母顺序排序。
  5. 有没有交易员是在米兰工作的?
  6. 打印生活在剑桥的交易员的所有交易额。
  7. 所有交易中,最高的交易额是多少?
  8. 找到交易额最小的交易。

领域:交易员和交易

以下是我们要处理的领域,一个 Traders 和 Transactions 的列表:

Trader raoul = new Trader("Raoul", "Cambridge");
Trader mario = new Trader("Mario", "Milan");
Trader alan = new Trader("Alan", "Cambridge");
Trader brian = new Trader("Brian", "Cambridge");

List<Transaction> transactions = Arrays.asList(
        new Transaction(brian, 2011, 300),
        new Transaction(raoul, 2012, 1000),
        new Transaction(raoul, 2011, 400),
        new Transaction(mario, 2012, 710),
        new Transaction(mario, 2012, 700),
        new Transaction(alan, 2012, 950)
);

Trader 和 Transaction 类的定义:

public class Trader {
    private String name;
    private String city;

    public Trader(String n, String c){
        this.name = n;
        this.city = c;
    }

    public String getName() {
        return name;
    }

    public void setName(String name) {
        this.name = name;
    }

    public String getCity() {
        return city;
    }

    public void setCity(String city) {
        this.city = city;
    }

    @Override
    public String toString() {
        return "Trader{" +
                "name='" + name + '\'' +
                ", city='" + city + '\'' +
                '}';
    }
}

Transaction 类:


public class Transaction {
    private Trader trader;
    private Integer year;
    private Integer value;

    public Transaction(Trader trader, Integer year, Integer value) {
        this.trader = trader;
        this.year = year;
        this.value = value;
    }

    public Trader getTrader() {
        return trader;
    }

    public void setTrader(Trader trader) {
        this.trader = trader;
    }

    public Integer getYear() {
        return year;
    }

    public void setYear(Integer year) {
        this.year = year;
    }

    public Integer getValue() {
        return value;
    }

    public void setValue(Integer value) {
        this.value = value;
    }

    @Override
    public String toString() {
        return "Transaction{" +
                "trader=" + trader +
                ", year=" + year +
                ", value=" + value +
                '}';
    }
}
首先,我们来看第一个问题:找出 2011 年发生的所有交易,并按交易额排序(从低到高)。
List<Transaction> tr2011 = transactions.stream()
                // 筛选出2011年发生的所有交易
                .filter(transaction -> transaction.getYear() == 2011)
                // 按照交易额从低到高排序
                .sorted(Comparator.comparing(Transaction::getValue))
                // 转为集合
                .collect(Collectors.toList());

太棒了,第一个问题我们很轻松的就解决了!首先,将 transactions 集合转为流,然后给 filter 传递一个谓词来选择 2011 年的交易,接着按照交易额从低到高进行排序,最后将 Stream 中的所有元素收集到一个 List 集合中。

第二个问题:交易员都在哪些不同的城市工作过?
List<String> cities = transactions.stream()
                // 提取出交易员所工作的城市
                .map(transaction -> transaction.getTrader().getCity())
                // 去除已有的城市
                .distinct()
                // 将Stream中所有的元素转为一个List集合
                .collect(Collectors.toList());

是的,我们很简单的完成了第二个问题。首先,将 transactions 集合转为流,然后使用 map 提取出与交易员相关的每位交易员所在的城市,接着使用 distinct 去除重复的城市(当然,我们也可以去掉 distinct,在最后我们就要使用 collect,将 Stream 中的元素转为一个 Set 集合。collect(Collectors.toSet())),我们只需要不同的城市,最后将 Stream 中的所有元素收集到一个 List 中。

第三个问题:查找所有来自于剑桥的交易员,并按姓名排序。
List<Trader> traders = transactions.stream()
                // 从交易中提取所有的交易员
                .map(Transaction::getTrader)
                // 进选择位于剑桥的交易员
                .filter(trader -> "Cambridge".equals(trader.getCity()))
                // 确保没有重复
                .distinct()
                // 对生成的交易员流按照姓名进行排序
                .sorted(Comparator.comparing(Trader::getName))
                .collect(Collectors.toList());

第三个问题,从交易中提取所有的交易员,然后进选择位于剑桥的交易员确保没有重复,接着对生成的交易员流按照姓名进行排序。

第四个问题:返回所有交易员的姓名字符串,按字母顺序排序。
String traderStr =
                transactions.stream()
                        // 提取所有交易员姓名,生成一个 Strings 构成的 Stream
                        .map(transaction -> transaction.getTrader().getName())
                        // 只选择不相同的姓名
                        .distinct()
                        // 对姓名按字母顺序排序
                        .sorted()
                        // 逐个拼接每个名字,得到一个将所有名字连接起来的 String
                        .reduce("", (n1, n2) -> n1 + " " + n2);

这些问题,我们都很轻松的就完成!首先,提取所有交易员姓名,生成一个 Strings 构成的 Stream 并且只选择不相同的姓名,然后对姓名按字母顺序排序,最后使用 reduce 将名字拼接起来!

请注意,此解决方案效率不高(所有字符串都被反复连接,每次迭代的时候都要建立一个新
的 String 对象)。下一章中,你将看到一个更为高效的解决方案,它像下面这样使用 joining (其
内部会用到 StringBuilder ):

String traderStr =
                transactions.stream()
                            .map(transaction -> transaction.getTrader().getName())
                            .distinct()
                            .sorted()
                            .collect(joining());
第五个问题:有没有交易员是在米兰工作的?
boolean milanBased =
                transactions.stream()
                        // 把一个谓词传递给 anyMatch ,检查是否有交易员在米兰工作
                        .anyMatch(transaction -> "Milan".equals(transaction.getTrader()
                                .getCity()));

第五个问题,依旧很简单把一个谓词传递给 anyMatch ,检查是否有交易员在米兰工作。

第六个问题:打印生活在剑桥的交易员的所有交易额。
transactions.stream()
                // 选择住在剑桥的交易员所进行的交易
                .filter(t -> "Cambridge".equals(t.getTrader().getCity()))
                // 提取这些交易的交易额
                .map(Transaction::getValue)
                // 打印每个值
                .forEach(System.out::println);

第六个问题,首先选择住在剑桥的交易员所进行的交易,接着提取这些交易的交易额,然后就打印出每个值。

第七个问题:所有交易中,最高的交易额是多少?
Optional<Integer> highestValue =
                transactions.stream()
                        // 提取每项交易的交易额
                        .map(Transaction::getValue)
                        // 计算生成的流中的最大值
                        .reduce(Integer::max);

第七个问题,首先提取每项交易的交易额,然后使用 reduce 计算生成的流中的最大值。

第八个问题:找到交易额最小的交易。
Optional<Transaction> smallestTransaction =
                transactions.stream()
                        // 通过反复比较每个交易的交易额,找出最小的交易
                        .reduce((t1, t2) ->
                                t1.getValue() < t2.getValue() ? t1 : t2);

是的,第八个问题很简单,但是还有更好的做法!流支持 min 和 max 方法,它们可以接受一个 Comparator 作为参数,指定
计算最小或最大值时要比较哪个键值:

Optional<Transaction> smallestTransaction = transactions.stream()
                                         .min(comparing(Transaction::getValue));

上面的八个问题,我们通过 Stream 很轻松的就完成了,真是太棒了!

数值流

我们在前面看到了可以使用 reduce 方法计算流中元素的总和。例如,你可以像下面这样计
算菜单的热量:

int calories = menu.stream()
                    .map(Dish::getCalories)
                    .reduce(0, Integer::sum);

这段代码的问题是,它有一个暗含的装箱成本。每个 Integer 都必须拆箱成一个原始类型,
再进行求和。要是可以直接像下面这样调用 sum 方法,岂不是更好?

int calories = menu.stream()
                    .map(Dish::getCalories)
                    .sum();

但这是不可能的。问题在于 map 方法会生成一个 Stream 。虽然流中的元素是 Integer 类
型,但 Streams 接口没有定义 sum 方法。为什么没有呢?比方说,你只有一个像 menu 那样的 Stream ,把各种菜加起来是没有任何意义的。但不要担心,Stream API 还提供了原始类型流特化,专门支持处理数值流的方法。

原始类型流特化

Java 8 引入了三个原始类型特化流接口来解决这个问题: IntStream 、 DoubleStream 和
LongStream ,分别将流中的元素特化为 int 、 long 和 double ,从而避免了暗含的装箱成本。每个接口都带来了进行常用数值归约的新方法,比如对数值流求和的 sum ,找到最大元素的 max。此外还有在必要时再把它们转换回对象流的方法。要记住的是,这些特化的原因并不在于流的复杂性,而是装箱造成的复杂性——即类似 int 和 Integer 之间的效率差异。

1.映射到数值流

将流转换为特化版本的常用方法是 mapToInt 、 mapToDouble 和 mapToLong 。这些方法和前
面说的 map 方法的工作方式一样,只是它们返回的是一个特化流,而不是 Stream 。例如,我们可以像下面这样用 mapToInt 对 menu 中的卡路里求和:

int calories = menu.stream()
        // 返回一个IntStream
        .mapToInt(Dish::getCalories)
        .sum();

这里, mapToInt 会从每道菜中提取热量(用一个 Integer 表示),并返回一个 IntStream
(而不是一个 Stream )。然后你就可以调用 IntStream 接口中定义的 sum 方法,对卡
路里求和了!请注意,如果流是空的, sum 默认返回 0 。 IntStream 还支持其他的方便方法,如
max 、 min 、 average 等。

2.转换回对象流

同样,一旦有了数值流,你可能会想把它转换回非特化流。例如, IntStream 上的操作只能
产生原始整数: IntStream 的 map 操作接受的 Lambda 必须接受 int 并返回 int (一个
IntUnaryOperator )。但是你可能想要生成另一类值,比如 Dish 。为此,你需要访问 Stream
接口中定义的那些更广义的操作。要把原始流转换成一般流(每个 int 都会装箱成一个
Integer ),可以使用 boxed 方法,如下所示:

IntStream intStream = menu.stream().mapToInt(Dish::getCalories);
Stream<Integer> stream = intStream.boxed();

3.默认值 OptionalInt

求和的那个例子很容易,因为它有一个默认值: 0 。但是,如果你要计算 IntStream 中的最
大元素,就得换个法子了,因为 0 是错误的结果。如何区分没有元素的流和最大值真的是 0 的流呢?
前面我们介绍了 Optional 类,这是一个可以表示值存在或不存在的容器。 Optional 可以用
Integer 、 String 等参考类型来参数化。对于三种原始流特化,也分别有一个 Optional 原始类
型特化版本: OptionalInt 、 OptionalDouble 和 OptionalLong 。

例如,要找到 IntStream 中的最大元素,可以调用 max 方法,它会返回一个 OptionalInt :

OptionalInt maxCalories = menu.stream()
                .mapToInt(Dish::getCalories)
                .max();

现在,如果没有最大值的话,你就可以显式处理 OptionalInt 去定义一个默认值了:

int max = maxCalories.orElse(1);

数值范围

和数字打交道时,有一个常用的东西就是数值范围。比如,假设你想要生成 1 和 100 之间的所有数字。Java 8 引入了两个可以用于 IntStream 和 LongStream 的静态方法,帮助生成这种范围:
range 和 rangeClosed 。这两个方法都是第一个参数接受起始值,第二个参数接受结束值。但
range 是不包含结束值的,而 rangeClosed 则包含结束值。让我们来看一个例子:

// 一个从1到100的偶数流 包含结束值
IntStream evenNumbers = IntStream.rangeClosed(1, 100)
        .filter(n -> n % 2 == 0);
// 从1到100共有50个偶数
System.out.println(evenNumbers.count());

这里我们用了 rangeClosed 方法来生成 1 到 100 之间的所有数字。它会产生一个流,然后你
可以链接 filter 方法,只选出偶数。到目前为止还没有进行任何计算。最后,你对生成的流调
用 count 。因为 count 是一个终端操作,所以它会处理流,并返回结果 50 ,这正是 1 到 100(包括
两端)中所有偶数的个数。请注意,比较一下,如果改用 IntStream.range(1, 100) ,则结果
将会是 49 个偶数,因为 range 是不包含结束值的。

构建流

希望到现在,我们已经让你相信,流对于表达数据处理查询是非常强大而有用的。到目前为
止,你已经能够使用 stream 方法从集合生成流了。此外,我们还介绍了如何根据数值范围创建
数值流。但创建流的方法还有许多!本节将介绍如何从值序列、数组、文件来创建流,甚至由生成函数来创建无限流!

由值创建流

你可以使用静态方法 Stream.of ,通过显式值创建一个流。它可以接受任意数量的参数。例
如,以下代码直接使用 Stream.of 创建了一个字符串流。然后,你可以将字符串转换为大写,再
一个个打印出来:

Stream<String> stream = Stream.of("Java 8 ", "Lambdas ", "In ", "Action");
stream.map(String::toUpperCase).forEach(System.out::println);

你可以使用 empty 得到一个空流,如下所示:

Stream<String> emptyStream = Stream.empty();

由数组创建流

我们可以使用静态方法 Arrays.stream 从数组创建一个流。它接受一个数组作为参数。例如,
我们可以将一个原始类型 int 的数组转换成一个 IntStream ,如下所示:

int[] numbers = {2, 3, 5, 7, 11, 13};
// 总和41
int sum = Arrays.stream(numbers).sum();
由文件生成流

Java 中用于处理文件等 I/O 操作的 NIO API(非阻塞 I/O)已更新,以便利用 Stream API。
java.nio.file.Files 中的很多静态方法都会返回一个流。例如,一个很有用的方法是
Files.lines ,它会返回一个由指定文件中的各行构成的字符串流。使用我们迄今所学的内容,我们可以用这个方法看看一个文件中有多少各不相同的词:

long uniqueWords;
try (Stream<String> lines = Files.lines(Paths.get(ClassLoader.getSystemResource("data.txt").toURI()),
        Charset.defaultCharset())) {
    uniqueWords = lines.flatMap(line -> Arrays.stream(line.split(" ")))
            .distinct()
            .count();
    System.out.println("uniqueWords:" + uniqueWords);
} catch (IOException e) {
    e.fillInStackTrace();
} catch (URISyntaxException e) {
    e.printStackTrace();
}

你可以使用 Files.lines 得到一个流,其中的每个元素都是给定文件中的一行。然后,你
可以对 line 调用 split 方法将行拆分成单词。应该注意的是,你该如何使用 flatMap 产生一个扁平的单词流,而不是给每一行生成一个单词流。最后,把 distinct 和 count 方法链接起来,数数流中有多少各不相同的单词。

由函数生成流:创建无限流

Stream API 提供了两个静态方法来从函数生成流: Stream.iterate 和 Stream.generate 。
这两个操作可以创建所谓的无限流:不像从固定集合创建的流那样有固定大小的流。由 iterate 和 generate 产生的流会用给定的函数按需创建值,因此可以无穷无尽地计算下去!一般来说,应该使用 limit(n) 来对这种流加以限制,以避免打印无穷多个值。

1.迭代

我们先来看一个 iterate 的简单例子,然后再解释:

Stream.iterate(0, n -> n + 2)
        .limit(10)
        .forEach(System.out::println);

iterate 方法接受一个初始值(在这里是 0 ),还有一个依次应用在每个产生的新值上的
Lambda( UnaryOperator 类型)。这里,我们使用 Lambda n -> n + 2 ,返回的是前一个元素加上 2。因此,iterate 方法生成了一个所有正偶数的流:流的第一个元素是初始值 0 。然后加上 2 来生成新的值 2 ,再加上 2 来得到新的值 4 ,以此类推。这种 iterate 操作基本上是顺序的,因为结果取决于前一次应用。请注意,此操作将生成一个无限流——这个流没有结尾,因为值是按需计算的,可以永远计算下去。我们说这个流是无界的。正如我们前面所讨论的,这是流和集合之间的一个关键区别。我们使用 limit 方法来显式限制流的大小。这里只选择了前 10 个偶数。然后可以调用 forEach 终端操作来消费流,并分别打印每个元素。

2.生成

与 iterate 方法类似, generate 方法也可让你按需生成一个无限流。但 generate 不是依次
对每个新生成的值应用函数的。它接受一个 Supplier 类型的 Lambda 提供新的值。我们先来
看一个简单的用法:

Stream.generate(Math::random)
                .limit(5)
                .forEach(System.out::println);

这段代码将生成一个流,其中有五个 0 到 1 之间的随机双精度数。例如,运行一次得到了下面
的结果:

0.8404010101858976
0.03607897810804739
0.025199243727344833
0.8368092999566692
0.14685668895309267

Math.Random 静态方法被用作新值生成器。同样,你可以用 limit 方法显式限制流的大小,
否则流将会无限长。

你可能想知道, generate 方法还有什么用途。我们使用的供应源(指向 Math.random 的方
法引用)是无状态的:它不会在任何地方记录任何值,以备以后计算使用。但供应源不一定是无状态的。你可以创建存储状态的供应源,它可以修改状态,并在为流生成下一个值时使用。

我们在这个例子中会使用 IntStream 说明避免装箱操作的代码。 IntStream 的 generate 方
法会接受一个 IntSupplier ,而不是 Supplier 。例如,可以这样来生成一个全是 1 的无限流:

IntStream ones = IntStream.generate(() -> 1);

还记得第三章的笔记中,Lambda 允许你创建函数式接口的实例,只要直接内联提供方法的实
现就可以。你也可以像下面这样,通过实现 IntSupplier 接口中定义的 getAsInt 方法显式传递一个对象(虽然这看起来是无缘无故地绕圈子,也请你耐心看):

IntStream twos = IntStream.generate(new IntSupplier(){
            @Override
            public int getAsInt(){
                return 2;
            }
        });

generate 方法将使用给定的供应源,并反复调用 getAsInt 方法,而这个方法总是返回 2 。
但这里使用的匿名类和 Lambda 的区别在于,匿名类可以通过字段定义状态,而状态又可以用
getAsInt 方法来修改。这是一个副作用的例子。我们迄今见过的所有 Lambda 都是没有副作用的;它们没有改变任何状态。

总结

这一章的东西很多,收获也很多!现在你可以更高效地处理集合了。事实上,流让你可以简洁地表达复杂的数据处理查询。此外,流可以透明地并行化。以下是我们应从本章中学到的关键概念。
这一章的读书笔记中,我们学习和了解到了:

  1. Streams API 可以表达复杂的数据处理查询。
  2. 你可以使用 filter 、 distinct 、 skip 和 limit 对流做筛选和切片。
  3. 你可以使用 map 和 flatMap 提取或转换流中的元素。
  4. 你可以使用 findFirst 和 findAny 方法查找流中的元素。你可以用 allMatch、noneMatch 和 anyMatch 方法让流匹配给定的谓词。
  5. 这些方法都利用了短路:找到结果就立即停止计算;没有必要处理整个流。
  6. 你可以利用 reduce 方法将流中所有的元素迭代合并成一个结果,例如求和或查找最大
    元素。
  7. filter 和 map 等操作是无状态的,它们并不存储任何状态。 reduce 等操作要存储状态才
    能计算出一个值。 sorted 和 distinct 等操作也要存储状态,因为它们需要把流中的所
    有元素缓存起来才能返回一个新的流。这种操作称为有状态操作。
  8. 流有三种基本的原始类型特化: IntStream 、 DoubleStream 和 LongStream 。它们的操
    作也有相应的特化。
  9. 流不仅可以从集合创建,也可从值、数组、文件以及 iterate 与 generate 等特定方法
    创建。
  10. 无限流是没有固定大小的流。

代码

Github: chap5

Gitee: chap5

  • Java

    Java 是一种可以撰写跨平台应用软件的面向对象的程序设计语言,是由 Sun Microsystems 公司于 1995 年 5 月推出的。Java 技术具有卓越的通用性、高效性、平台移植性和安全性。

    3190 引用 • 8214 回帖 • 1 关注

相关帖子

欢迎来到这里!

我们正在构建一个小众社区,大家在这里相互信任,以平等 • 自由 • 奔放的价值观进行分享交流。最终,希望大家能够找到与自己志同道合的伙伴,共同成长。

注册 关于
请输入回帖内容 ...