算法:反转单链表

本贴最后更新于 921 天前,其中的信息可能已经事过景迁

对 leetCode 一个算法的分析学习,支持对单链表内指定区间的反转实现。
206. 反转链表
92. 反转链表 II

import java.util.ArrayList;
import java.util.IdentityHashMap;
import java.util.List;

/**
 * 对leetCode一个算法的分析学习
 * 题目:单链表的反转
 *
 * @author hudk
 * @date 2020/5/27 20:20
 */
public class Solution {


    /**
     * 单链表结点
     */
    public static class ListNode {
        int val;
        public ListNode next;

        public ListNode(int x) {
            val = x;
        }

        @Override
        public String toString() {
            return String.valueOf(val);
        }
    }


    /**
     * leetCode 题目:反转单链表1
     *
     * 示例:
     * 输入: 1->2->3->4->5->NULL
     * 输出: 5->4->3->2->1->NULL
     * 进阶:
     * 你可以迭代或递归地反转链表。你能否用两种方法解决这道题?
     *
     * 来源:力扣(LeetCode)
     * 链接:https://leetcode-cn.com/problems/reverse-linked-list
     * 著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
     * @param head
     * @return
     */

    /**
     * 方法一
     * 这个方法是本人解答方案,相对使用了比较多的空间
     * 空间复杂度:O(n)
     * 时间复杂度:O(n)
     *
     * @param head
     * @return
     */
    public static ListNode myReverseList(ListNode head) {
        //当链表长度为零时,直接返回null
        if (head == null) {
            return null;
        }
        //引用指向头结点
        ListNode h = head;
        //遍历整个链表,统计链表长度 i
        int i = 1;
        while (h.next != null) {
            i++;
            h = h.next;
        }
        //创建一个和链表长度一样的数组,并将链表的元素按照原顺序逐个放入数组中
        ListNode[] ln = new ListNode[i];
        for (int j = 0; j < i; j++) {
            ln[j] = head;
            head = head.next;
        }
        //再从数组的尾部开始遍历,逐个该表链表元素的next指针指向前一个元素。
        for (int x = i - 1; x > 0; x--) {
            ln[x].next = ln[x - 1];
        }
        //将原来的头结点(现在转置后的尾结点next引用置空)
        ln[0].next = null;
        //返回转置后新的头结点
        return ln[i - 1];
    }

    /**
     * 方法二
     * 这个方法是leetCode上的算法大神解答的方案
     * 利用递归的巧妙与优雅实现
     *
     * 作者:labuladong
     * 链接:https://leetcode-cn.com/problems/reverse-linked-list-ii/solution/bu-bu-chai-jie-ru-he-di-gui-di-fan-zhuan-lian-biao/
     * 来源:力扣(LeetCode)
     * 著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
     *
     * @param head
     * @return
     */
    public static ListNode revers(ListNode head) {
        if (head.next == null) {
            return head;
        }
        ListNode last = revers(head.next);
        head.next.next = head;
        head.next = null;
        return last;
    }


    /**
     * 方法三
     * 这个方法是官方解答的方案
     * 利用了迭代的思想,同样简洁且高效
     * 空间复杂度:O(1)
     * 时间复杂度:O(n)
     *
     * 来源:力扣(LeetCode)
     * 链接:https://leetcode-cn.com/problems/reverse-linked-list
     * 著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
     *
     * @param head
     * @return
     */
    public static ListNode reverseList(ListNode head) {
        ListNode prev = null;
        ListNode curr = head;
        ListNode nextTemp = null;
        while (curr != null) {
            nextTemp = curr.next;
            curr.next = prev;
            prev = curr;
            curr = nextTemp;
        }
        return prev;
    }

    /**
     * leetCode 题目:反转单链表2
     * 反转从位置 m 到 n 的链表。请使用一趟扫描完成反转。
     *
     * 说明:
     * 1 ≤ m ≤ n ≤ 链表长度。
     *
     * 示例:
     * 输入: 1->2->3->4->5->NULL, m = 2, n = 4
     * 输出: 1->4->3->2->5->NULL
     *
     * 来源:力扣(LeetCode)
     * 链接:https://leetcode-cn.com/problems/reverse-linked-list-ii
     * 著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
     */


    /**
     * 方法一 begin*******************************************************************
     * <p>
     * 递归实现单链表的指定区间反转
     * 这个算法的实现,淋漓尽致的体现了递归的优雅与简洁。
     * 适用于链表长度比较短的场景,或对性能要求不高的场景
     * <p>
     * 作者:labuladong
     * 链接:https://leetcode-cn.com/problems/reverse-linked-list-ii/solution/bu-bu-chai-jie-ru-he-di-gui-di-fan-zhuan-lian-biao/
     * 来源:力扣(LeetCode)
     * 著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
     *
     * @param head
     * @param m
     * @param n
     * @return
     */
    public static ListNode reverseBetween(ListNode head, int m, int n) {
        if(head == null){
            return null;
        }
        // base case
        if (m == 1) {
            //单链表的前n个结点反转
            return reverseN(head, n);
        }
        // 前进到反转的起点触发 base case
        head.next = reverseBetween(head.next, m - 1, n - 1);
        return head;
    }

    /**
     * 递归实现单链表的前n个结点反转
     */
    static ListNode successor = null; // 后驱节点

    // 反转以 head 为起点的 n 个节点,返回新的头结点
    public static ListNode reverseN(ListNode head, int n) {
        if(head == null){
            return null;
        }
        if (n == 1) {
            // 记录第 n + 1 个节点
            successor = head.next;
            return head;
        }
        // 以 head.next 为起点,需要反转前 n - 1 个节点
        ListNode last = reverseN(head.next, n - 1);

        head.next.next = head;
        // 让反转之后的 head 节点和后面的节点连起来
        head.next = successor;
        return last;
    }

    /**方法一end*******************************************************************/


    /**
     * 方法二
     * 这是本人的解答方案,使用了迭代的思路,并将各种情况逐一考虑,分别处理。
     * 代码量比较多,但自我感觉逻辑看起来更加清晰一些。
     *
     * @param head 链表头结点
     * @param m    翻转区间开始位置
     * @param n    翻转区间结束位置
     * @return
     */
    public static ListNode myReverseBetween(ListNode head, int m, int n) {
        if(m <= 0){
            m = 1;
        }
        int size = size(head);
        if(n > size){
            n = size;
        }
        //如果传入为空,直接返回空
        if (head == null) {
            return null;
        }
        //如果m = n,说明转置后等于没转置,所以不做处理直接返回原链表
        if (m == n) {
            return head;
        }
        //1、当m等于1时,倒序之后,第一个结点一定会和第n+1个结点相连
        //2、并且第n个结点,会成为新链表的头结点
        if (m == 1) {
            ListNode perv = null;
            ListNode crr = head;
            ListNode nodeOne = null;
            int i = 1;
            while (crr != null) {
                ListNode next = crr.next;
                if (i == 1) {
                    //暂时记住第一个结点,后面它将会与第n+1个结点相连
                    nodeOne = crr;
                    nodeOne.next = null;
                    //为迭代做准备,从第2个结点开始迭代地做“翻转”动作,故将第1个结点当做下次循环时的“前置结点”
                    perv = crr;
                }
                //从第二个结点开始,一直到第n个结点,逐一"翻转"他们的next
                if (i > m && i < n) {
                    crr.next = perv;
                    perv = crr;
                }
                //第n个结点
                if (i == n) {
                    //第一个结点的的next引用指向了第n+1个结点
                    nodeOne.next = crr.next;
                    //翻转第n个结点的next
                    crr.next = perv;
                    //第n个结点,会成为新链表的头结点
                    head = crr;
                    //由于后面得结点不需要做处理了,故跳出循环即可
                    break;
                }
                //迭代
                crr = next;
                i++;
            }
        }
        //1、如果m>1,第m-1个结点会与第n个结点相连,第m个结点会与第n+1个结点相连
        //2、然后,第m+1个到第n个结点的next依次“翻转”
        //3、头结点不变
        if (m > 1) {
            ListNode perv = null;
            ListNode crr = head;
            ListNode nodeMp = null;//第m个结点的前一个结点
            ListNode nodeM = null;//第m个结点
            int i = 1;
            while (crr != null) {
                ListNode next = crr.next;
                if (i == m - 1) {
                    //暂时记住第m-1个结点,后面它将会与第n个结点相连
                    nodeMp = crr;
                    nodeMp.next = null;
                }
                if (i == m) {
                    //暂时记住第m个结点,后面它将会与第n+1个结点相连
                    nodeM = crr;
                    nodeM.next = null;
                    //为迭代做准备,从m+1个结点开始迭代地做“翻转”动作,故将第m个结点当做下次循环时的“前置结点”
                    perv = crr;
                }
                //第m+1个到第n个结点的next依次“翻转”
                if (i > m && i < n) {
                    crr.next = perv;
                    perv = crr;
                }
                if (i == n) {
                    //第m个结点的next引用指向了第n+1个结点
                    nodeM.next = crr.next;
                    //翻转第n个结点的next
                    crr.next = perv;
                    //第m-1个结点的next引用指向了第n个结点
                    nodeMp.next = crr;
                    //由于后面得结点不需要做处理了,故跳出循环即可
                    break;
                }
                //迭代
                crr = next;
                i++;
            }
        }
        return head;
    }

    /**方法二end*******************************************************************/


    /**
     * 测试用例
     * @param args
     */
    public static void main(String[] args) {
        //生成一个长度为10的单链表
        ListNode head = createRandomSingleLinkList(10);
        //打印初始链表
        printLinkList(head);
        //反转测试
        ListNode head1 = myReverseList(head);
        printLinkList(head1);
        //迭代方式反转测试
        ListNode head2 = reverseList(head1);
        printLinkList(head2);
        //递归方式反转测试
        ListNode head3 = revers(head2);
        printLinkList(head3);
        //迭代方式反转指定区间测试
        ListNode head4 = myReverseBetween(head3,2,8);
        printLinkList(head4);
        //递归方式反转指定区间测试
        ListNode head5 = reverseBetween(head4,4,5);
        printLinkList(head5);
    }


    /**
     * 生成一个指定长度的链表
     * @param size
     * @return
     */
    public static ListNode createRandomSingleLinkList(int size){
        if(size == 0){
            return null;
        }
        ListNode head = new ListNode(1);
        ListNode crr= head;
        for(int i=1; i<size; i++){
            ListNode node = new ListNode(i+1);
            crr.next = node;
            crr = node;
        }
        return head;
    }

    /**
     * 生成 0 - 100 范围内的随机正式
     * @return
     */
    public static int randomInt(){
        return (int)Math.floor(Math.random()*100);
    }

    /**
     * 打印链表
     * @param head
     */
    public static void printLinkList(ListNode head){
        List<ListNode> nodes = new ArrayList<>();
        if(head == null){
            System.out.println(nodes);
            return;
        }
        nodes.add(head);
        while (head.next != null){
            nodes.add(head.next);
            head = head.next;
        }
        System.out.println(nodes);
    }

    /**
     * 计算单链表长度
     * @param head
     * @return
     */
    public static int size(ListNode head){
        if(head == null){
            return 0;
        }
        int i = 1;
        while (head.next != null){
            head = head.next;
            i++;
        }
        return i;
    }

}
1 操作
hudk 在 2021-10-11 10:53:17 更新了该帖

相关帖子

欢迎来到这里!

我们正在构建一个小众社区,大家在这里相互信任,以平等 • 自由 • 奔放的价值观进行分享交流。最终,希望大家能够找到与自己志同道合的伙伴,共同成长。

注册 关于
请输入回帖内容 ...

推荐标签 标签

  • 微信

    腾讯公司 2011 年 1 月 21 日推出的一款手机通讯软件。用户可以通过摇一摇、搜索号码、扫描二维码等添加好友和关注公众平台,同时可以将自己看到的精彩内容分享到微信朋友圈。

    129 引用 • 793 回帖
  • SVN

    SVN 是 Subversion 的简称,是一个开放源代码的版本控制系统,相较于 RCS、CVS,它采用了分支管理系统,它的设计目标就是取代 CVS。

    29 引用 • 98 回帖 • 693 关注
  • 机器学习

    机器学习(Machine Learning)是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。

    76 引用 • 37 回帖
  • Tomcat

    Tomcat 最早是由 Sun Microsystems 开发的一个 Servlet 容器,在 1999 年被捐献给 ASF(Apache Software Foundation),隶属于 Jakarta 项目,现在已经独立为一个顶级项目。Tomcat 主要实现了 JavaEE 中的 Servlet、JSP 规范,同时也提供 HTTP 服务,是市场上非常流行的 Java Web 容器。

    162 引用 • 529 回帖
  • Git

    Git 是 Linux Torvalds 为了帮助管理 Linux 内核开发而开发的一个开放源码的版本控制软件。

    205 引用 • 357 回帖 • 1 关注
  • Thymeleaf

    Thymeleaf 是一款用于渲染 XML/XHTML/HTML5 内容的模板引擎。类似 Velocity、 FreeMarker 等,它也可以轻易的与 Spring 等 Web 框架进行集成作为 Web 应用的模板引擎。与其它模板引擎相比,Thymeleaf 最大的特点是能够直接在浏览器中打开并正确显示模板页面,而不需要启动整个 Web 应用。

    11 引用 • 19 回帖 • 317 关注
  • Google

    Google(Google Inc.,NASDAQ:GOOG)是一家美国上市公司(公有股份公司),于 1998 年 9 月 7 日以私有股份公司的形式创立,设计并管理一个互联网搜索引擎。Google 公司的总部称作“Googleplex”,它位于加利福尼亚山景城。Google 目前被公认为是全球规模最大的搜索引擎,它提供了简单易用的免费服务。不作恶(Don't be evil)是谷歌公司的一项非正式的公司口号。

    49 引用 • 192 回帖
  • Jenkins

    Jenkins 是一套开源的持续集成工具。它提供了非常丰富的插件,让构建、部署、自动化集成项目变得简单易用。

    51 引用 • 37 回帖
  • PHP

    PHP(Hypertext Preprocessor)是一种开源脚本语言。语法吸收了 C 语言、 Java 和 Perl 的特点,主要适用于 Web 开发领域,据说是世界上最好的编程语言。

    164 引用 • 407 回帖 • 526 关注
  • Bootstrap

    Bootstrap 是 Twitter 推出的一个用于前端开发的开源工具包。它由 Twitter 的设计师 Mark Otto 和 Jacob Thornton 合作开发,是一个 CSS / HTML 框架。

    18 引用 • 33 回帖 • 685 关注
  • V2Ray
    1 引用 • 15 回帖
  • Java

    Java 是一种可以撰写跨平台应用软件的面向对象的程序设计语言,是由 Sun Microsystems 公司于 1995 年 5 月推出的。Java 技术具有卓越的通用性、高效性、平台移植性和安全性。

    3167 引用 • 8207 回帖
  • 书籍

    宋真宗赵恒曾经说过:“书中自有黄金屋,书中自有颜如玉。”

    76 引用 • 390 回帖 • 1 关注
  • danl
    61 关注
  • 开源

    Open Source, Open Mind, Open Sight, Open Future!

    395 引用 • 3408 回帖
  • GitBook

    GitBook 使您的团队可以轻松编写和维护高质量的文档。 分享知识,提高团队的工作效率,让用户满意。

    3 引用 • 8 回帖
  • Docker

    Docker 是一个开源的应用容器引擎,让开发者可以打包他们的应用以及依赖包到一个可移植的容器中,然后发布到任何流行的操作系统上。容器完全使用沙箱机制,几乎没有性能开销,可以很容易地在机器和数据中心中运行。

    476 引用 • 899 回帖
  • LeetCode

    LeetCode(力扣)是一个全球极客挚爱的高质量技术成长平台,想要学习和提升专业能力从这里开始,充足技术干货等你来啃,轻松拿下 Dream Offer!

    209 引用 • 72 回帖
  • 工具

    子曰:“工欲善其事,必先利其器。”

    273 引用 • 679 回帖
  • ZooKeeper

    ZooKeeper 是一个分布式的,开放源码的分布式应用程序协调服务,是 Google 的 Chubby 一个开源的实现,是 Hadoop 和 HBase 的重要组件。它是一个为分布式应用提供一致性服务的软件,提供的功能包括:配置维护、域名服务、分布式同步、组服务等。

    59 引用 • 29 回帖 • 15 关注
  • WordPress

    WordPress 是一个使用 PHP 语言开发的博客平台,用户可以在支持 PHP 和 MySQL 数据库的服务器上架设自己的博客。也可以把 WordPress 当作一个内容管理系统(CMS)来使用。WordPress 是一个免费的开源项目,在 GNU 通用公共许可证(GPLv2)下授权发布。

    45 引用 • 113 回帖 • 317 关注
  • NGINX

    NGINX 是一个高性能的 HTTP 和反向代理服务器,也是一个 IMAP/POP3/SMTP 代理服务器。 NGINX 是由 Igor Sysoev 为俄罗斯访问量第二的 Rambler.ru 站点开发的,第一个公开版本 0.1.0 发布于 2004 年 10 月 4 日。

    311 引用 • 546 回帖 • 37 关注
  • RIP

    愿逝者安息!

    8 引用 • 92 回帖 • 293 关注
  • Kafka

    Kafka 是一种高吞吐量的分布式发布订阅消息系统,它可以处理消费者规模的网站中的所有动作流数据。 这种动作(网页浏览,搜索和其他用户的行动)是现代系统中许多功能的基础。 这些数据通常是由于吞吐量的要求而通过处理日志和日志聚合来解决。

    35 引用 • 35 回帖
  • Log4j

    Log4j 是 Apache 开源的一款使用广泛的 Java 日志组件。

    20 引用 • 18 回帖 • 43 关注
  • OnlyOffice
    4 引用 • 28 关注
  • Spark

    Spark 是 UC Berkeley AMP lab 所开源的类 Hadoop MapReduce 的通用并行框架。Spark 拥有 Hadoop MapReduce 所具有的优点;但不同于 MapReduce 的是 Job 中间输出结果可以保存在内存中,从而不再需要读写 HDFS,因此 Spark 能更好地适用于数据挖掘与机器学习等需要迭代的 MapReduce 的算法。

    74 引用 • 46 回帖 • 549 关注