算法:反转单链表

本贴最后更新于 1168 天前,其中的信息可能已经事过景迁

对 leetCode 一个算法的分析学习,支持对单链表内指定区间的反转实现。
206. 反转链表
92. 反转链表 II

import java.util.ArrayList;
import java.util.IdentityHashMap;
import java.util.List;

/**
 * 对leetCode一个算法的分析学习
 * 题目:单链表的反转
 *
 * @author hudk
 * @date 2020/5/27 20:20
 */
public class Solution {


    /**
     * 单链表结点
     */
    public static class ListNode {
        int val;
        public ListNode next;

        public ListNode(int x) {
            val = x;
        }

        @Override
        public String toString() {
            return String.valueOf(val);
        }
    }


    /**
     * leetCode 题目:反转单链表1
     *
     * 示例:
     * 输入: 1->2->3->4->5->NULL
     * 输出: 5->4->3->2->1->NULL
     * 进阶:
     * 你可以迭代或递归地反转链表。你能否用两种方法解决这道题?
     *
     * 来源:力扣(LeetCode)
     * 链接:https://leetcode-cn.com/problems/reverse-linked-list
     * 著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
     * @param head
     * @return
     */

    /**
     * 方法一
     * 这个方法是本人解答方案,相对使用了比较多的空间
     * 空间复杂度:O(n)
     * 时间复杂度:O(n)
     *
     * @param head
     * @return
     */
    public static ListNode myReverseList(ListNode head) {
        //当链表长度为零时,直接返回null
        if (head == null) {
            return null;
        }
        //引用指向头结点
        ListNode h = head;
        //遍历整个链表,统计链表长度 i
        int i = 1;
        while (h.next != null) {
            i++;
            h = h.next;
        }
        //创建一个和链表长度一样的数组,并将链表的元素按照原顺序逐个放入数组中
        ListNode[] ln = new ListNode[i];
        for (int j = 0; j < i; j++) {
            ln[j] = head;
            head = head.next;
        }
        //再从数组的尾部开始遍历,逐个该表链表元素的next指针指向前一个元素。
        for (int x = i - 1; x > 0; x--) {
            ln[x].next = ln[x - 1];
        }
        //将原来的头结点(现在转置后的尾结点next引用置空)
        ln[0].next = null;
        //返回转置后新的头结点
        return ln[i - 1];
    }

    /**
     * 方法二
     * 这个方法是leetCode上的算法大神解答的方案
     * 利用递归的巧妙与优雅实现
     *
     * 作者:labuladong
     * 链接:https://leetcode-cn.com/problems/reverse-linked-list-ii/solution/bu-bu-chai-jie-ru-he-di-gui-di-fan-zhuan-lian-biao/
     * 来源:力扣(LeetCode)
     * 著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
     *
     * @param head
     * @return
     */
    public static ListNode revers(ListNode head) {
        if (head.next == null) {
            return head;
        }
        ListNode last = revers(head.next);
        head.next.next = head;
        head.next = null;
        return last;
    }


    /**
     * 方法三
     * 这个方法是官方解答的方案
     * 利用了迭代的思想,同样简洁且高效
     * 空间复杂度:O(1)
     * 时间复杂度:O(n)
     *
     * 来源:力扣(LeetCode)
     * 链接:https://leetcode-cn.com/problems/reverse-linked-list
     * 著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
     *
     * @param head
     * @return
     */
    public static ListNode reverseList(ListNode head) {
        ListNode prev = null;
        ListNode curr = head;
        ListNode nextTemp = null;
        while (curr != null) {
            nextTemp = curr.next;
            curr.next = prev;
            prev = curr;
            curr = nextTemp;
        }
        return prev;
    }

    /**
     * leetCode 题目:反转单链表2
     * 反转从位置 m 到 n 的链表。请使用一趟扫描完成反转。
     *
     * 说明:
     * 1 ≤ m ≤ n ≤ 链表长度。
     *
     * 示例:
     * 输入: 1->2->3->4->5->NULL, m = 2, n = 4
     * 输出: 1->4->3->2->5->NULL
     *
     * 来源:力扣(LeetCode)
     * 链接:https://leetcode-cn.com/problems/reverse-linked-list-ii
     * 著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
     */


    /**
     * 方法一 begin*******************************************************************
     * <p>
     * 递归实现单链表的指定区间反转
     * 这个算法的实现,淋漓尽致的体现了递归的优雅与简洁。
     * 适用于链表长度比较短的场景,或对性能要求不高的场景
     * <p>
     * 作者:labuladong
     * 链接:https://leetcode-cn.com/problems/reverse-linked-list-ii/solution/bu-bu-chai-jie-ru-he-di-gui-di-fan-zhuan-lian-biao/
     * 来源:力扣(LeetCode)
     * 著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
     *
     * @param head
     * @param m
     * @param n
     * @return
     */
    public static ListNode reverseBetween(ListNode head, int m, int n) {
        if(head == null){
            return null;
        }
        // base case
        if (m == 1) {
            //单链表的前n个结点反转
            return reverseN(head, n);
        }
        // 前进到反转的起点触发 base case
        head.next = reverseBetween(head.next, m - 1, n - 1);
        return head;
    }

    /**
     * 递归实现单链表的前n个结点反转
     */
    static ListNode successor = null; // 后驱节点

    // 反转以 head 为起点的 n 个节点,返回新的头结点
    public static ListNode reverseN(ListNode head, int n) {
        if(head == null){
            return null;
        }
        if (n == 1) {
            // 记录第 n + 1 个节点
            successor = head.next;
            return head;
        }
        // 以 head.next 为起点,需要反转前 n - 1 个节点
        ListNode last = reverseN(head.next, n - 1);

        head.next.next = head;
        // 让反转之后的 head 节点和后面的节点连起来
        head.next = successor;
        return last;
    }

    /**方法一end*******************************************************************/


    /**
     * 方法二
     * 这是本人的解答方案,使用了迭代的思路,并将各种情况逐一考虑,分别处理。
     * 代码量比较多,但自我感觉逻辑看起来更加清晰一些。
     *
     * @param head 链表头结点
     * @param m    翻转区间开始位置
     * @param n    翻转区间结束位置
     * @return
     */
    public static ListNode myReverseBetween(ListNode head, int m, int n) {
        if(m <= 0){
            m = 1;
        }
        int size = size(head);
        if(n > size){
            n = size;
        }
        //如果传入为空,直接返回空
        if (head == null) {
            return null;
        }
        //如果m = n,说明转置后等于没转置,所以不做处理直接返回原链表
        if (m == n) {
            return head;
        }
        //1、当m等于1时,倒序之后,第一个结点一定会和第n+1个结点相连
        //2、并且第n个结点,会成为新链表的头结点
        if (m == 1) {
            ListNode perv = null;
            ListNode crr = head;
            ListNode nodeOne = null;
            int i = 1;
            while (crr != null) {
                ListNode next = crr.next;
                if (i == 1) {
                    //暂时记住第一个结点,后面它将会与第n+1个结点相连
                    nodeOne = crr;
                    nodeOne.next = null;
                    //为迭代做准备,从第2个结点开始迭代地做“翻转”动作,故将第1个结点当做下次循环时的“前置结点”
                    perv = crr;
                }
                //从第二个结点开始,一直到第n个结点,逐一"翻转"他们的next
                if (i > m && i < n) {
                    crr.next = perv;
                    perv = crr;
                }
                //第n个结点
                if (i == n) {
                    //第一个结点的的next引用指向了第n+1个结点
                    nodeOne.next = crr.next;
                    //翻转第n个结点的next
                    crr.next = perv;
                    //第n个结点,会成为新链表的头结点
                    head = crr;
                    //由于后面得结点不需要做处理了,故跳出循环即可
                    break;
                }
                //迭代
                crr = next;
                i++;
            }
        }
        //1、如果m>1,第m-1个结点会与第n个结点相连,第m个结点会与第n+1个结点相连
        //2、然后,第m+1个到第n个结点的next依次“翻转”
        //3、头结点不变
        if (m > 1) {
            ListNode perv = null;
            ListNode crr = head;
            ListNode nodeMp = null;//第m个结点的前一个结点
            ListNode nodeM = null;//第m个结点
            int i = 1;
            while (crr != null) {
                ListNode next = crr.next;
                if (i == m - 1) {
                    //暂时记住第m-1个结点,后面它将会与第n个结点相连
                    nodeMp = crr;
                    nodeMp.next = null;
                }
                if (i == m) {
                    //暂时记住第m个结点,后面它将会与第n+1个结点相连
                    nodeM = crr;
                    nodeM.next = null;
                    //为迭代做准备,从m+1个结点开始迭代地做“翻转”动作,故将第m个结点当做下次循环时的“前置结点”
                    perv = crr;
                }
                //第m+1个到第n个结点的next依次“翻转”
                if (i > m && i < n) {
                    crr.next = perv;
                    perv = crr;
                }
                if (i == n) {
                    //第m个结点的next引用指向了第n+1个结点
                    nodeM.next = crr.next;
                    //翻转第n个结点的next
                    crr.next = perv;
                    //第m-1个结点的next引用指向了第n个结点
                    nodeMp.next = crr;
                    //由于后面得结点不需要做处理了,故跳出循环即可
                    break;
                }
                //迭代
                crr = next;
                i++;
            }
        }
        return head;
    }

    /**方法二end*******************************************************************/


    /**
     * 测试用例
     * @param args
     */
    public static void main(String[] args) {
        //生成一个长度为10的单链表
        ListNode head = createRandomSingleLinkList(10);
        //打印初始链表
        printLinkList(head);
        //反转测试
        ListNode head1 = myReverseList(head);
        printLinkList(head1);
        //迭代方式反转测试
        ListNode head2 = reverseList(head1);
        printLinkList(head2);
        //递归方式反转测试
        ListNode head3 = revers(head2);
        printLinkList(head3);
        //迭代方式反转指定区间测试
        ListNode head4 = myReverseBetween(head3,2,8);
        printLinkList(head4);
        //递归方式反转指定区间测试
        ListNode head5 = reverseBetween(head4,4,5);
        printLinkList(head5);
    }


    /**
     * 生成一个指定长度的链表
     * @param size
     * @return
     */
    public static ListNode createRandomSingleLinkList(int size){
        if(size == 0){
            return null;
        }
        ListNode head = new ListNode(1);
        ListNode crr= head;
        for(int i=1; i<size; i++){
            ListNode node = new ListNode(i+1);
            crr.next = node;
            crr = node;
        }
        return head;
    }

    /**
     * 生成 0 - 100 范围内的随机正式
     * @return
     */
    public static int randomInt(){
        return (int)Math.floor(Math.random()*100);
    }

    /**
     * 打印链表
     * @param head
     */
    public static void printLinkList(ListNode head){
        List<ListNode> nodes = new ArrayList<>();
        if(head == null){
            System.out.println(nodes);
            return;
        }
        nodes.add(head);
        while (head.next != null){
            nodes.add(head.next);
            head = head.next;
        }
        System.out.println(nodes);
    }

    /**
     * 计算单链表长度
     * @param head
     * @return
     */
    public static int size(ListNode head){
        if(head == null){
            return 0;
        }
        int i = 1;
        while (head.next != null){
            head = head.next;
            i++;
        }
        return i;
    }

}
1 操作
hudk 在 2021-10-11 10:53:17 更新了该帖

相关帖子

欢迎来到这里!

我们正在构建一个小众社区,大家在这里相互信任,以平等 • 自由 • 奔放的价值观进行分享交流。最终,希望大家能够找到与自己志同道合的伙伴,共同成长。

注册 关于
请输入回帖内容 ...

推荐标签 标签

  • 外包

    有空闲时间是接外包好呢还是学习好呢?

    26 引用 • 232 回帖
  • danl
    146 关注
  • Telegram

    Telegram 是一个非盈利性、基于云端的即时消息服务。它提供了支持各大操作系统平台的开源的客户端,也提供了很多强大的 APIs 给开发者创建自己的客户端和机器人。

    5 引用 • 35 回帖
  • 安装

    你若安好,便是晴天。

    132 引用 • 1184 回帖 • 1 关注
  • Q&A

    提问之前请先看《提问的智慧》,好的问题比好的答案更有价值。

    8449 引用 • 38490 回帖 • 155 关注
  • flomo

    flomo 是新一代 「卡片笔记」 ,专注在碎片化时代,促进你的记录,帮你积累更多知识资产。

    5 引用 • 107 回帖
  • 学习

    “梦想从学习开始,事业从实践起步” —— 习近平

    171 引用 • 512 回帖
  • Hexo

    Hexo 是一款快速、简洁且高效的博客框架,使用 Node.js 编写。

    21 引用 • 140 回帖 • 2 关注
  • 星云链

    星云链是一个开源公链,业内简单的将其称为区块链上的谷歌。其实它不仅仅是区块链搜索引擎,一个公链的所有功能,它基本都有,比如你可以用它来开发部署你的去中心化的 APP,你可以在上面编写智能合约,发送交易等等。3 分钟快速接入星云链 (NAS) 测试网

    3 引用 • 16 回帖 • 6 关注
  • Solidity

    Solidity 是一种智能合约高级语言,运行在 [以太坊] 虚拟机(EVM)之上。它的语法接近于 JavaScript,是一种面向对象的语言。

    3 引用 • 18 回帖 • 400 关注
  • GitBook

    GitBook 使您的团队可以轻松编写和维护高质量的文档。 分享知识,提高团队的工作效率,让用户满意。

    3 引用 • 8 回帖
  • Notion

    Notion - The all-in-one workspace for your notes, tasks, wikis, and databases.

    7 引用 • 40 回帖
  • GitHub

    GitHub 于 2008 年上线,目前,除了 Git 代码仓库托管及基本的 Web 管理界面以外,还提供了订阅、讨论组、文本渲染、在线文件编辑器、协作图谱(报表)、代码片段分享(Gist)等功能。正因为这些功能所提供的便利,又经过长期的积累,GitHub 的用户活跃度很高,在开源世界里享有深远的声望,并形成了社交化编程文化(Social Coding)。

    210 引用 • 2036 回帖
  • JVM

    JVM(Java Virtual Machine)Java 虚拟机是一个微型操作系统,有自己的硬件构架体系,还有相应的指令系统。能够识别 Java 独特的 .class 文件(字节码),能够将这些文件中的信息读取出来,使得 Java 程序只需要生成 Java 虚拟机上的字节码后就能在不同操作系统平台上进行运行。

    180 引用 • 120 回帖 • 3 关注
  • Swagger

    Swagger 是一款非常流行的 API 开发工具,它遵循 OpenAPI Specification(这是一种通用的、和编程语言无关的 API 描述规范)。Swagger 贯穿整个 API 生命周期,如 API 的设计、编写文档、测试和部署。

    26 引用 • 35 回帖 • 5 关注
  • WiFiDog

    WiFiDog 是一套开源的无线热点认证管理工具,主要功能包括:位置相关的内容递送;用户认证和授权;集中式网络监控。

    1 引用 • 7 回帖 • 592 关注
  • 反馈

    Communication channel for makers and users.

    123 引用 • 913 回帖 • 250 关注
  • SQLServer

    SQL Server 是由 [微软] 开发和推广的关系数据库管理系统(DBMS),它最初是由 微软、Sybase 和 Ashton-Tate 三家公司共同开发的,并于 1988 年推出了第一个 OS/2 版本。

    21 引用 • 31 回帖 • 4 关注
  • 正则表达式

    正则表达式(Regular Expression)使用单个字符串来描述、匹配一系列遵循某个句法规则的字符串。

    31 引用 • 94 回帖 • 2 关注
  • 开源

    Open Source, Open Mind, Open Sight, Open Future!

    407 引用 • 3578 回帖
  • Latke

    Latke 是一款以 JSON 为主的 Java Web 框架。

    71 引用 • 535 回帖 • 789 关注
  • 创造

    你创造的作品可能会帮助到很多人,如果是开源项目的话就更赞了!

    178 引用 • 997 回帖
  • OpenShift

    红帽提供的 PaaS 云,支持多种编程语言,为开发人员提供了更为灵活的框架、存储选择。

    14 引用 • 20 回帖 • 632 关注
  • CSDN

    CSDN (Chinese Software Developer Network) 创立于 1999 年,是中国的 IT 社区和服务平台,为中国的软件开发者和 IT 从业者提供知识传播、职业发展、软件开发等全生命周期服务,满足他们在职业发展中学习及共享知识和信息、建立职业发展社交圈、通过软件开发实现技术商业化等刚性需求。

    14 引用 • 155 回帖
  • MyBatis

    MyBatis 本是 Apache 软件基金会 的一个开源项目 iBatis,2010 年这个项目由 Apache 软件基金会迁移到了 google code,并且改名为 MyBatis ,2013 年 11 月再次迁移到了 GitHub。

    170 引用 • 414 回帖 • 387 关注
  • GAE

    Google App Engine(GAE)是 Google 管理的数据中心中用于 WEB 应用程序的开发和托管的平台。2008 年 4 月 发布第一个测试版本。目前支持 Python、Java 和 Go 开发部署。全球已有数十万的开发者在其上开发了众多的应用。

    14 引用 • 42 回帖 • 779 关注
  • 导航

    各种网址链接、内容导航。

    42 引用 • 175 回帖