PHY 状态简介

本贴最后更新于 1279 天前,其中的信息可能已经时移世改

PHY 的 12 种状态

enum phy_state { PHY_DOWN = 0, //关闭网卡 PHY_STARTING, //PHY设备准备好了,PHY driver尚为准备好 PHY_READY, //PHY设备注册成功 PHY_PENDING, //PHY芯片挂起 PHY_UP, //开启网卡 PHY_AN, //网卡自协商 PHY_RUNNING, //网卡已经插入网线并建立物理连接,该状态可切换到PHY_CHANGELINK PHY_NOLINK, //断网,拔掉网线 PHY_FORCING,//自动协商失败,强制处理(读phy状态寄存器,设置速率,设置工作模式) PHY_CHANGELINK, //LINK检查,当物理连接存在时切换到PHY_RUNING,物理连接不存在时切换到PHY_NOLINK PHY_HALTED, //网卡关闭时,PHY挂起 PHY_RESUMING //网卡开启时,PHY恢复 };

PHY 状态机

PHY 状态切换图
PHY 指 PHY 芯片,负责数据传送与接收所需要的电与光信号、线路状态、时钟基准、数据编码和电路等,并向数据链路层设备提供标准接口。
MAC 指 MAC 芯片,属于数据链路层,提供寻址机构、数据帧的构建、数据差错检查、传送控制、向网络层提供标准的数据接口等功能。
PHY_DOWN: phy、phy driver、mac 都没准备好

  1. 如果 phy driver 被集成在内核中,PHY.probe 后,phydev 状态为 PHY_READY。
  2. 如果 phy driver 被未集成在内核中,PHY.probe 后,phydev 状态为 PHY_STARTING。

PHY_READY:phy、phy driver 已经就绪,mac 未准备好
当 MAC 层加载时,在 PHY.start 后,phydev 状态切换为 PHY_UP。

PHY_STARTING:phy 准备就绪,phy driver、mac 未准备好

  1. 当 MAC 加载时,PHY.start 后,phydev 状态为 PHY_PENDING。
  2. 当 phy driver 加载时,phydev 状态为 PHY_READY。

PHY_PENDING:phy、mac 准备就绪,phy driver 未准备好
当 phy dirver 加载后,phdev 状态为 PHY_UP

上图中 0-->1-->2-->4、0-->2-->4 代表 phy、phy dirver、mac 顺序加载。
0-->1-->3-->4 代表 phy、mac、phy driver 顺序加载。

PHY_UP:phy、phy driver、mac 准备就绪
当前状态将启动自动协商,若启动成功则进入 PHY_AN,若启动失败则进入 PHY_FORCING。

PHY_AN:网卡自协商模式,检测自协商是否完成。
先判断物理链路的状态,如果未 LINK 则进入 PHY_NOLINK,如果 LINK 则判断自协商是否完成,
自协商完成进入 PHY_RUNNING,若自协商超时则重新开启自协商。

PHY_FORCING:强制协商
读 link 和自协商状态寄存器,如果状态正常则进入 PHY_RUNNING 模式。

PHY_NOLINK:物理链路未连接
判断物理链路状态,如果 LINK,再判断是否支持自协商,若支持待自协商完成后进入 PHY_RUNNING 模式,
若不支持,直接进入 PHY_RUNNING 模式。若自协商处于挂起状态,则进入 PHY_AN 模式。

PHY_RUNNING:正常运行中
获取当前 link 状态,当 link 状态发生改变时,进入 PHY_CHANGELINK 模式。

PHY_CHANGELINK:检查物理链路
物理链路 link 时,切换到 PHY_RUNNING,非 LINK 时切换到 PHY_NOLINK。

PHY_HALTED:网卡关闭 phy_stop
挂起 phy
PHY_RESUMING: 网卡启用 phy_start
恢复 phy

phy_state_machine 是 PHY 的状态机函数

/** * phy_state_machine - Handle the state machine * @work: work_struct that describes the work to be done */ void phy_state_machine(struct work_struct *work) { struct delayed_work *dwork = to_delayed_work(work); struct phy_device *phydev = container_of(dwork, struct phy_device, state_queue); bool needs_aneg = false, do_suspend = false; enum phy_state old_state; int err = 0; int old_link; mutex_lock(&phydev->lock); old_state = phydev->state; if (phydev->drv->link_change_notify) phydev->drv->link_change_notify(phydev); switch (phydev->state) { case PHY_DOWN: case PHY_STARTING: case PHY_READY: case PHY_PENDING: break; case PHY_UP: needs_aneg = true; phydev->link_timeout = PHY_AN_TIMEOUT; break; case PHY_AN: err = phy_read_status(phydev); if (err < 0) break; /* If the link is down, give up on negotiation for now */ if (!phydev->link) { phydev->state = PHY_NOLINK; netif_carrier_off(phydev->attached_dev); phydev->adjust_link(phydev->attached_dev); break; } /* Check if negotiation is done. Break if there's an error */ err = phy_aneg_done(phydev); if (err < 0) break; /* If AN is done, we're running */ if (err > 0) { phydev->state = PHY_RUNNING; netif_carrier_on(phydev->attached_dev); phydev->adjust_link(phydev->attached_dev); } else if (0 == phydev->link_timeout--) needs_aneg = true; break; case PHY_NOLINK: if (phy_interrupt_is_valid(phydev)) break; err = phy_read_status(phydev); if (err) break; if (phydev->link) { if (AUTONEG_ENABLE == phydev->autoneg) { err = phy_aneg_done(phydev); if (err < 0) break; if (!err) { phydev->state = PHY_AN; phydev->link_timeout = PHY_AN_TIMEOUT; break; } } phydev->state = PHY_RUNNING; netif_carrier_on(phydev->attached_dev); phydev->adjust_link(phydev->attached_dev); } break; case PHY_FORCING: err = genphy_update_link(phydev); if (err) break; if (phydev->link) { phydev->state = PHY_RUNNING; netif_carrier_on(phydev->attached_dev); } else { if (0 == phydev->link_timeout--) needs_aneg = true; } phydev->adjust_link(phydev->attached_dev); break; case PHY_RUNNING: /* Only register a CHANGE if we are polling or ignoring * interrupts and link changed since latest checking. */ if (!phy_interrupt_is_valid(phydev)) { old_link = phydev->link; err = phy_read_status(phydev); if (err) break; if (old_link != phydev->link) phydev->state = PHY_CHANGELINK; } /* * Failsafe: check that nobody set phydev->link=0 between two * poll cycles, otherwise we won't leave RUNNING state as long * as link remains down. */ if (!phydev->link && phydev->state == PHY_RUNNING) { phydev->state = PHY_CHANGELINK; dev_err(&phydev->dev, "no link in PHY_RUNNING\n"); } break; case PHY_CHANGELINK: err = phy_read_status(phydev); if (err) break; if (phydev->link) { phydev->state = PHY_RUNNING; netif_carrier_on(phydev->attached_dev); } else { phydev->state = PHY_NOLINK; netif_carrier_off(phydev->attached_dev); } phydev->adjust_link(phydev->attached_dev); if (phy_interrupt_is_valid(phydev)) err = phy_config_interrupt(phydev, PHY_INTERRUPT_ENABLED); break; case PHY_HALTED: if (phydev->link) { phydev->link = 0; netif_carrier_off(phydev->attached_dev); phydev->adjust_link(phydev->attached_dev); do_suspend = true; } break; case PHY_RESUMING: if (AUTONEG_ENABLE == phydev->autoneg) { err = phy_aneg_done(phydev); if (err < 0) break; /* err > 0 if AN is done. * Otherwise, it's 0, and we're still waiting for AN */ if (err > 0) { err = phy_read_status(phydev); if (err) break; if (phydev->link) { phydev->state = PHY_RUNNING; netif_carrier_on(phydev->attached_dev); } else { phydev->state = PHY_NOLINK; } phydev->adjust_link(phydev->attached_dev); } else { phydev->state = PHY_AN; phydev->link_timeout = PHY_AN_TIMEOUT; } } else { err = phy_read_status(phydev); if (err) break; if (phydev->link) { phydev->state = PHY_RUNNING; netif_carrier_on(phydev->attached_dev); } else { phydev->state = PHY_NOLINK; } phydev->adjust_link(phydev->attached_dev); } break; } mutex_unlock(&phydev->lock); if (needs_aneg) err = phy_start_aneg(phydev); else if (do_suspend) phy_suspend(phydev); if (err < 0) phy_error(phydev); dev_dbg(&phydev->dev, "PHY state change %s -> %s\n", phy_state_to_str(old_state), phy_state_to_str(phydev->state)); queue_delayed_work(system_power_efficient_wq, &phydev->state_queue, PHY_STATE_TIME * HZ); }

问:若操作系统没有加载网卡驱动,网卡虽然在系统设备树上,但网卡接口创建不了,那网卡实际能不能接收到数据?
答:这里面有很多细节, 我根据 Intel 网卡的 Spec 大概写了写, 想尽量写的通俗一些,所以没有刻意用 Spec 里的术语,另外本文虽然讲的是 MAC/PHY,但光口卡的(SERDES)也是类似的.

  1. PCI 设备做 reset 以后进入 D0uninitialized(非初始化的 D0 状态, 参考 PCI 电源管理规范),此时网卡的 MAC 和 DMA 都不工作,PHY 是工作在一个特殊的低电源状态的;
  2. 操作系统创建设备树时,初始化这个设备,PCI 命令寄存器的 Memory Access Enable or the I/O Access Enable bit 会被 enable, 这就是 D0active.此时 PHY/MAC 就使能了;
  3. PHY 被使能应该就可以接收物理链路上的数据了,否则不能收到 FLP/NLP, PHY 就不能建立物理连接.但这类包一般是流量间歇发送的;
  4. 驱动程序一般要通过寄存器来控制 PHY, 比如自动协商 speed/duplex, 查询物理链路的状态 Link up/down;
  5. MAC 被使能后, 如果没有驱动设置控制寄存器的一个位(CTRL.SLU )的话, MAC 和 PHY 是不能通讯的, 就是说 MAC 不知道 PHY 的 link 已经 ready, 所以收不到任何数据的.这位设置以后, PHY 完成自协商, 网卡才会有个 Link change 的中断,知道物理连接已经 Link UP 了;
  6. 即使 Link 已经 UP, MAC 还需要 enable 接收器的一个位(RCTL.RXEN ),包才可以被接收进来,如果网卡被 reset,这位是 0,意味着所有的包都会被直接 drop 掉,不会存入网卡的 FIFO.老网卡在驱动退出前利用这位关掉接收.Intel 的最新千兆网卡发送接收队列的动态配置就是依靠这个位的,重新配置的过程一定要关掉流量;
  7. 无论驱动加载与否, 发生 reset 后,网卡 EEPOM 里的 mac 地址会写入网卡的 MAC 地址过滤寄存器, 驱动可以去修改这个寄存器,现代网卡通常支持很多 MAC 地址,也就是说,MAC 地址是可以被软件设置的.例如,Intel 的千兆网卡就支持 16 个单播 MAC 地址,但只有 1 个是存在 EEPROM 里的,其它是软件声称和设置的;
  8. 但如果驱动没有加载,网卡已经在设备树上,操作系统完成了步骤 1-2 的初始化,此时网卡的 PHY 应该是工作的,但因为没有人设置控制位(CTRL.SLU)来让 MAC 和 PHY 建立联系,所以 MAC 是不收包的.这个控制位在 reset 时会再设置成 0;
  9. PHY 可以被软件设置加电和断电, 断电状态除了接收管理命令以外,不会接收数据.另外,PHY 还能工作在 Smart Power Down 模式下,link down 就进入省电状态;
  10. 有些多口网卡,多个网口共享一个 PHY, 所以 BIOS 里设置 disbale 了某个网口, 也未必会把 PHY 的电源关掉,反过来,也要小心地关掉 PHY 的电源;
  11. 要详细了解 PHY,最终还是要熟悉 IEEE 以太网的相关协议.

ps: pipe.b3log.org 提供的站点无法同步文章了,显示同步成功,实际并没有。

  • Linux

    Linux 是一套免费使用和自由传播的类 Unix 操作系统,是一个基于 POSIX 和 Unix 的多用户、多任务、支持多线程和多 CPU 的操作系统。它能运行主要的 Unix 工具软件、应用程序和网络协议,并支持 32 位和 64 位硬件。Linux 继承了 Unix 以网络为核心的设计思想,是一个性能稳定的多用户网络操作系统。

    954 引用 • 944 回帖

相关帖子

1 回帖

欢迎来到这里!

我们正在构建一个小众社区,大家在这里相互信任,以平等 • 自由 • 奔放的价值观进行分享交流。最终,希望大家能够找到与自己志同道合的伙伴,共同成长。

注册 关于
请输入回帖内容 ...
  • stepforwards via Linux
    作者

    今天又上了 pipe,结果就像是第一次使用,文章全丢了

推荐标签 标签

  • B3log

    B3log 是一个开源组织,名字来源于“Bulletin Board Blog”缩写,目标是将独立博客与论坛结合,形成一种新的网络社区体验,详细请看 B3log 构思。目前 B3log 已经开源了多款产品:SymSoloVditor思源笔记

    1063 引用 • 3455 回帖 • 154 关注
  • Netty

    Netty 是一个基于 NIO 的客户端-服务器编程框架,使用 Netty 可以让你快速、简单地开发出一个可维护、高性能的网络应用,例如实现了某种协议的客户、服务端应用。

    49 引用 • 33 回帖 • 34 关注
  • iOS

    iOS 是由苹果公司开发的移动操作系统,最早于 2007 年 1 月 9 日的 Macworld 大会上公布这个系统,最初是设计给 iPhone 使用的,后来陆续套用到 iPod touch、iPad 以及 Apple TV 等产品上。iOS 与苹果的 Mac OS X 操作系统一样,属于类 Unix 的商业操作系统。

    89 引用 • 150 回帖
  • sts
    2 引用 • 2 回帖 • 238 关注
  • 开源

    Open Source, Open Mind, Open Sight, Open Future!

    411 引用 • 3588 回帖
  • 禅道

    禅道是一款国产的开源项目管理软件,她的核心管理思想基于敏捷方法 scrum,内置了产品管理和项目管理,同时又根据国内研发现状补充了测试管理、计划管理、发布管理、文档管理、事务管理等功能,在一个软件中就可以将软件研发中的需求、任务、bug、用例、计划、发布等要素有序的跟踪管理起来,完整地覆盖了项目管理的核心流程。

    10 引用 • 15 回帖 • 6 关注
  • TGIF

    Thank God It's Friday! 感谢老天,总算到星期五啦!

    291 引用 • 4495 回帖 • 658 关注
  • 反馈

    Communication channel for makers and users.

    122 引用 • 912 回帖 • 280 关注
  • frp

    frp 是一个可用于内网穿透的高性能的反向代理应用,支持 TCP、UDP、 HTTP 和 HTTPS 协议。

    17 引用 • 7 回帖 • 2 关注
  • BookxNote

    BookxNote 是一款全新的电子书学习工具,助力您的学习与思考,让您的大脑更高效的记忆。

    笔记整理交给我,一心只读圣贤书。

    1 引用 • 1 回帖
  • Hibernate

    Hibernate 是一个开放源代码的对象关系映射框架,它对 JDBC 进行了非常轻量级的对象封装,使得 Java 程序员可以随心所欲的使用对象编程思维来操纵数据库。

    39 引用 • 103 回帖 • 727 关注
  • Ruby

    Ruby 是一种开源的面向对象程序设计的服务器端脚本语言,在 20 世纪 90 年代中期由日本的松本行弘(まつもとゆきひろ/Yukihiro Matsumoto)设计并开发。在 Ruby 社区,松本也被称为马茨(Matz)。

    7 引用 • 31 回帖 • 257 关注
  • 面试

    面试造航母,上班拧螺丝。多面试,少加班。

    326 引用 • 1395 回帖
  • ZeroNet

    ZeroNet 是一个基于比特币加密技术和 BT 网络技术的去中心化的、开放开源的网络和交流系统。

    1 引用 • 21 回帖 • 653 关注
  • H2

    H2 是一个开源的嵌入式数据库引擎,采用 Java 语言编写,不受平台的限制,同时 H2 提供了一个十分方便的 web 控制台用于操作和管理数据库内容。H2 还提供兼容模式,可以兼容一些主流的数据库,因此采用 H2 作为开发期的数据库非常方便。

    11 引用 • 54 回帖 • 674 关注
  • Wide

    Wide 是一款基于 Web 的 Go 语言 IDE。通过浏览器就可以进行 Go 开发,并有代码自动完成、查看表达式、编译反馈、Lint、实时结果输出等功能。

    欢迎访问我们运维的实例: https://wide.b3log.org

    30 引用 • 218 回帖 • 636 关注
  • Lute

    Lute 是一款结构化的 Markdown 引擎,支持 Go 和 JavaScript。

    29 引用 • 202 回帖 • 28 关注
  • TensorFlow

    TensorFlow 是一个采用数据流图(data flow graphs),用于数值计算的开源软件库。节点(Nodes)在图中表示数学操作,图中的线(edges)则表示在节点间相互联系的多维数据数组,即张量(tensor)。

    20 引用 • 19 回帖 • 1 关注
  • CongSec

    本标签主要用于分享网络空间安全专业的学习笔记

    1 引用 • 1 回帖 • 36 关注
  • 大疆创新

    深圳市大疆创新科技有限公司(DJI-Innovations,简称 DJI),成立于 2006 年,是全球领先的无人飞行器控制系统及无人机解决方案的研发和生产商,客户遍布全球 100 多个国家。通过持续的创新,大疆致力于为无人机工业、行业用户以及专业航拍应用提供性能最强、体验最佳的革命性智能飞控产品和解决方案。

    2 引用 • 14 回帖
  • danl
    174 关注
  • Sphinx

    Sphinx 是一个基于 SQL 的全文检索引擎,可以结合 MySQL、PostgreSQL 做全文搜索,它可以提供比数据库本身更专业的搜索功能,使得应用程序更容易实现专业化的全文检索。

    1 引用 • 221 关注
  • 支付宝

    支付宝是全球领先的独立第三方支付平台,致力于为广大用户提供安全快速的电子支付/网上支付/安全支付/手机支付体验,及转账收款/水电煤缴费/信用卡还款/AA 收款等生活服务应用。

    29 引用 • 347 回帖
  • SEO

    发布对别人有帮助的原创内容是最好的 SEO 方式。

    35 引用 • 200 回帖 • 33 关注
  • C

    C 语言是一门通用计算机编程语言,应用广泛。C 语言的设计目标是提供一种能以简易的方式编译、处理低级存储器、产生少量的机器码以及不需要任何运行环境支持便能运行的编程语言。

    86 引用 • 165 回帖
  • webpack

    webpack 是一个用于前端开发的模块加载器和打包工具,它能把各种资源,例如 JS、CSS(less/sass)、图片等都作为模块来使用和处理。

    42 引用 • 130 回帖 • 250 关注
  • Notion

    Notion - The all-in-one workspace for your notes, tasks, wikis, and databases.

    10 引用 • 77 回帖