1.定域测量的因果律(复标量场)
复标量场的 Lagrangian 为
\mathcal{L}=(\partial_{\mu}\phi)^{\dagger}(\partial^{\mu}\phi)-m^2\phi^{\dagger}\phi
该系统具有两个自由度 \phi 和 \phi^{\dagger}。对应的动力学方程为
\boxed{\begin{aligned}(\partial^2+m^2)\phi&=0\\(\partial^2+m^2)\phi^{\dagger}&=0\end{aligned}}
其中,\partial^2=\square=\partial_t^2-\nabla^2,解的形式为
\begin{aligned}
\phi(x)&=\int\frac{d^3p}{(2\pi)^32E_p}\Big(
{\color{red} a(p)e^{-ip\cdot x}} +
{\color{blue} b^{\dagger}(p)e^{ip\cdot x}}
\Big) \\
\phi^{\dagger}(x)&=\int\frac{d^3p}{(2\pi)^32E_p}\Big(
{\color{red} a^{\dagger}(p)e^{ip\cdot x}} +
{\color{blue} b(p)e^{-ip\cdot x}}
\Big)
\end{aligned}
其中,\begin{aligned}p\cdot x=p^{\mu}x_{\mu}=E_pt-\vec p\cdot\vec x\end{aligned},令 \begin{aligned}\frac{d^3p}{(2\pi)^32E_p}=d{\tilde{p}}\end{aligned},\phi(x) 的红色部分代表湮灭一个正粒子,蓝色部分代表产生一个反粒子。它们满足动力学方程,带入验证即 \begin{aligned}\partial^2\phi=\int d\tilde{p}(-E_p^2)\Big(\left(a(p)e^{-ipx}+b^{\dagger}(p)e^{ipx}\right)\Big)-\int -|\vec{p}|^2d\tilde{p}\left(a(p)e^{-ip\cdot x}+b^{\dagger}(p)e^{ip\cdot x}\right)\Rightarrow(\partial^2+m^2)\phi=\int d\tilde{p}(m^2+|\vec{p}|^2-E_p^2)\left(a(p)e^{-ipx}+b^{\dagger}(p)e^{ipx}\right)=0\end{aligned} 这是因为满足在壳条件 \begin{aligned}p^2=p^{\mu}p_{\mu}=E_p^2-|\vec{p}|^2=m^2\end{aligned},同理代入 \phi^{\dagger}(x) 满足第二个运动学方程。
复标量场的量子化条件:复标量场的动量场算符为 \begin{aligned}\pi=\frac{\partial\mathcal{L}}{\partial(\partial_{0}\phi)}=\frac{\partial}{\partial(\partial_0\phi)}\big((\partial_{\mu}\phi)^{\dagger}\partial^{\mu}\phi\big)=\partial_{\mu}\phi^{\dagger}\delta^{\mu}_0=\partial_0\phi^{\dagger}\end{aligned},\pi^{\dagger}=\partial_0\phi。等时正则对易关系为 \begin{aligned}[\phi(\vec x,t),\pi(\vec y,t)]=i\delta(\vec x-\vec y),[\phi^{\dagger}(\vec x,t),\pi^{\dagger}(\vec y,t)]=i\delta(\vec x-\vec y)\end{aligned}。或者在动量空间表示为
\begin{aligned}
{\color{red}[a(p),a^{\dagger}(p')]=[b(p),b^{\dagger}(p')]=(2\pi)^32E_p\delta^3(\vec p-\vec p')}
\end{aligned}
其余对易子皆为 \begin{aligned}0\end{aligned}。
对于类空区域 (x-x')^2<0
\begin{aligned}
[\phi(x),\phi^{\dagger}(x')]&=\int\int d\tilde{p}d\tilde{p'}\Big[a(p)e^{-ip\cdot x}+b^{\dagger}(p)e^{ip\cdot x},a^{\dagger}(p')e^{ip'\cdot x'}+b(p')e^{-ip'\cdot x'}\Big]\\
&=
\int\int d\tilde{p} d\tilde{p'}e^{-i(p\cdot x-p'\cdot x')}[a(p),a^{\dagger}(p')]+e^{i(p\cdot x-p'\cdot x')}[b^{\dagger}(p),b(p')]+e^{-i(p'\cdot x'+p\cdot x)}[a(p),b(p')]+e^{i(p\cdot x+p'\cdot x')}[b^{\dagger}(p),a^{\dagger}(p')]\\
&=\int\int d\tilde{p}d\tilde{p'}e^{-i(p\cdot x-p'\cdot x')}(2\pi)^3\delta(p-p')-e^{i(p\cdot x-p'\cdot x')}(2\pi)^3\delta(p-p')\\&=\int d\tilde{p}e^{-ip\cdot(x-x')}-e^{ip\cdot(x-x')}
\end{aligned}
类似地,还有对易子
\begin{aligned}
[\partial_{\mu}\phi(x),\phi^{\dagger}(x')]&=\int d\tilde{p}(-ip_{\mu})\Big(e^{-ip\cdot(x-x')}+e^{ip\cdot(x-x')}\Big)
\\ [\partial_{\mu}\phi(x),\partial_{\nu}\phi^{\dagger}(x')]&=\int d\tilde{p}(p_{\mu}p_{\nu})\Big(e^{-ip\cdot(x-x')}-e^{ip\cdot(x-x')}\Big)
\end{aligned}
这些对易子显然都是 Lorentz 不变的,所以我们进行 boost 变换将其变成等时情况进行计算,以第一个对易子为例,有
\begin{aligned}[\phi(x),\phi^{\dagger}(x')]&=\int d\tilde{p}e^{-ip\cdot(x-x')}-e^{ip\cdot(x-x')}\\&=\int d\tilde{p}\left(e^{-i\vec p\cdot\vec d}-e^{i\vec p\cdot\vec d}\right)\\&=0\end{aligned}
其中,|\vec d|=\sqrt{-\Delta x^2}。类似地,剩余两个对易子也为 \begin{aligned}0\end{aligned}。
复标量场具有 U(1) 对称性,即 \begin{aligned}\phi(x)\rightarrow e^{-i\theta}\phi(x),\phi^{\dagger}\rightarrow\phi^{\dagger}(x)e^{i\theta}\end{aligned} 变换下,\mathcal{L}'=\mathcal{L}。该变换下 Lagrangian 具有不变性,\begin{aligned}\mathcal{L}'=(\partial_{\mu}\phi'(x))^{\dagger}(\partial^{\mu}\phi'(x)-m^2\phi'(x)\phi'^{\dagger}(x)=e^{i\theta}e^{-i\theta}(\partial_{\mu}\phi ^{\dagger}(x))(\partial^{\mu}\phi(x))-m^2\phi(x)^{\dagger}\phi(x)=\mathcal{L}\end{aligned}。就称复标量场具有 U(1) 对称性。根据诺特定理,连续对称性对应守恒流 j^{\mu},考虑无穷小变换,U(1) 变换对应的 Lee 群为 G=\{e^{i\alpha},\alpha\in R\},则在无穷小变换下 \phi'(x)-\phi(x)=\delta\phi(x)=i\alpha\phi(x),于是对应的守恒流为
\begin{aligned}
\color{blue} j^{\mu} &\color{blue}= \color{blue} \frac{\partial\mathcal{L}}{\partial(\partial_{\mu}\phi_i)}\Delta\phi_i \\
&=\frac{\partial\mathcal{L}}{\partial(\partial_{\mu}\phi)}\Delta\phi+\frac{\partial\mathcal{L}}{\partial(\partial_{\mu}\phi^{\dagger})}\Delta\phi^{\dagger}\\&=(\partial^{\mu}\phi^{\dagger})i\alpha\phi(x)+(\partial^{\mu}\phi)(-i\alpha\phi^{\dagger}(x))\\&=i\alpha\left(\partial^{\mu}\phi^{\dagger}\phi(x)-(\partial^{\mu}\phi(x)\phi^{\dagger}(x)\right)\\&={\color{red}i\Big(\phi(x)(\partial^{\mu}\phi^{\dagger})-\phi^{\dagger}(x)\partial^{\mu}\phi(x)\Big)}
\end{aligned}
这里最后一步直接将 \alpha 吸收进了 j^{\mu} 中,流守恒方程为 \begin{aligned}\partial_{\mu}j^{\mu}=i\Bigg(\partial_{\mu}\phi\partial^{\mu}\phi^{\dagger}+\phi\partial^2\phi^{\dagger}-\partial_{\mu}\phi^{\dagger}\partial^{\mu}\phi-\phi^{\dagger}\partial^2\phi\Bigg)=i\big(\phi(-m^2\phi^{\dagger})-\phi^{\dagger}(-m^2\phi)\big)=0\end{aligned}。
在类空间隔,任意两个可观察算符都是可对易的 [O,\tilde{O}]=0,这意味着不会有有任何信息超光速传播,保障了因果性。于是,j^{\mu} 的各分量之间是对易的,即
\begin{aligned}
[j^{\mu}(x),j^{\nu}(x')]
&=
\big[\phi(x)\partial^{\mu}\phi^{\dagger}(x)-\phi^{\dagger}(x)\partial^{\mu}\phi(x),\;
\phi(x')\partial'^{\nu}\phi^{\dagger}(x')-\phi^{\dagger}(x')\partial'^{\nu}\phi(x')\big] \\[4pt]
&=
[\phi(x)\partial^{\mu}\phi^{\dagger}(x),\;\phi(x')\partial'^{\nu}\phi^{\dagger}(x')]
-
[\phi(x)\partial^{\mu}\phi^{\dagger}(x),\;\phi^{\dagger}(x')\partial'^{\nu}\phi(x')] \\[4pt]
&\quad
-
[\phi^{\dagger}(x)\partial^{\mu}\phi(x),\;\phi(x')\partial'^{\nu}\phi^{\dagger}(x')]
+
[\phi^{\dagger}(x)\partial^{\mu}\phi(x),\;\phi^{\dagger}(x')\partial'^{\nu}\phi(x')]
\\[6pt]
&=
\phi(x)\,[\partial^{\mu}\phi^{\dagger}(x),\phi(x')]\;\partial'^{\nu}\phi^{\dagger}(x')
+\phi(x)\,\phi(x')\,[\partial^{\mu}\phi^{\dagger}(x),\partial'^{\nu}\phi^{\dagger}(x')] \\
&\quad
+[\phi(x),\phi(x')]\;\partial^{\mu}\phi^{\dagger}(x)\,\partial'^{\nu}\phi^{\dagger}(x')
+\phi(x')\,[\phi(x),\partial'^{\nu}\phi^{\dagger}(x')]\;\partial^{\mu}\phi^{\dagger}(x)
\\[4pt]
&\quad
-\phi(x)\,[\partial^{\mu}\phi^{\dagger}(x),\phi^{\dagger}(x')]\;\partial'^{\nu}\phi(x')
-\phi(x)\,\phi^{\dagger}(x')\,[\partial^{\mu}\phi^{\dagger}(x),\partial'^{\nu}\phi(x')] \\
&\quad
- [\phi(x),\phi^{\dagger}(x')] \;\partial^{\mu}\phi^{\dagger}(x)\,\partial'^{\nu}\phi(x')
- \phi^{\dagger}(x')\,[\phi(x),\partial'^{\nu}\phi(x')]\;\partial^{\mu}\phi^{\dagger}(x)
\\[4pt]
&\quad
-\phi^{\dagger}(x)\,[\partial^{\mu}\phi(x),\phi(x')]\;\partial'^{\nu}\phi^{\dagger}(x')
-\phi^{\dagger}(x)\,\phi(x')\,[\partial^{\mu}\phi(x),\partial'^{\nu}\phi^{\dagger}(x')] \\
&\quad
- [\phi^{\dagger}(x),\phi(x')]\;\partial^{\mu}\phi(x)\,\partial'^{\nu}\phi^{\dagger}(x')
- \phi(x')\,[\phi^{\dagger}(x),\partial'^{\nu}\phi^{\dagger}(x')]\;\partial^{\mu}\phi(x)
\\[4pt]
&\quad
+\phi^{\dagger}(x)\,[\partial^{\mu}\phi(x),\phi^{\dagger}(x')]\;\partial'^{\nu}\phi(x')
+\phi^{\dagger}(x)\,\phi^{\dagger}(x')\,[\partial^{\mu}\phi(x),\partial'^{\nu}\phi(x')] \\
&\quad
+[\phi^{\dagger}(x),\phi^{\dagger}(x')]\;\partial^{\mu}\phi(x)\,\partial'^{\nu}\phi(x')
+ \phi^{\dagger}(x')\,[\phi^{\dagger}(x),\partial'^{\nu}\phi(x')]\;\partial^{\mu}\phi(x).
\end{aligned}
由于类空间隔中,上式涉及的对易子皆为 \begin{aligned}0\end{aligned},所以
[j^{\mu}(x),j^{\nu}(x')]=0
假设有一个只存在正粒子的世界,
\begin{aligned}\phi(x)&=\int d\tilde{p}a(p)e^{-ip\cdot x}\\\phi^{\dagger}(x)&=\int d\tilde{p}a^{\dagger}(p)e^{ip\cdot x}\end{aligned}
这是违背了因果律的,因为
\begin{aligned}
[\phi(x),\phi^{\dagger}(x')]&=\int\int d\tilde{p}d\tilde{p'}e^{i(p'\cdot x'-p\cdot x)}[a(p),a^{\dagger}(p')]=\int\int d\tilde{p}d\tilde{p'}(2\pi)^32E_p\delta(p-p')e^{i(p'\cdot x'-p\cdot x)}=\int d\tilde{p}e^{ip\cdot( x'-x)}\\&=\frac{m^2}{4\pi^2}K_1(\delta)\\
\end{aligned}
其中的 \delta=\sqrt{-m^2(x-x')^2}>0,类似地,还有
\begin{aligned}
[\partial_{\mu}\phi(x),\phi^{\dagger}(x')]&=-\frac{m^4}{4\pi^2}(x-x')_{\mu}\Big[\frac{1}{\delta}\frac{d}{d\delta}\big(\frac{K_1(\delta)}{\delta}\big)\Big]\\
[\partial_{\mu}\phi(x),\partial_{\nu}\phi^{\dagger}(x')]&=\frac{m^4}{4\pi^2}g_{\mu\nu}\Big[\frac{1}{\delta}\frac{d}{d\delta}\big(\frac{K_1(\delta)}{\delta}\big)\Big]-\frac{m^4(x-x')_{\mu}(x-x')_{\nu}}{4\pi^2}\Big[(\frac{1}{\delta}\frac{d}{d\delta})^2(\frac{K_1(\delta)}{\delta})\Big]
\end{aligned}
导致在系统的守恒流分量之间相互并不对易,
\begin{aligned}
[j^{\mu}(x),j^{\nu}(x')]
&=
\phi(x)\,[\partial^{\mu}\phi^{\dagger}(x),\phi(x')]\;\partial'^{\nu}\phi^{\dagger}(x')
+\phi(x)\,\phi(x')\,[\partial^{\mu}\phi^{\dagger}(x),\partial'^{\nu}\phi^{\dagger}(x')]
\\[4pt]
&\quad
+[\phi(x),\phi(x')]\;\partial^{\mu}\phi^{\dagger}(x)\,\partial'^{\nu}\phi^{\dagger}(x')
+ \phi(x')\,[\phi(x),\partial'^{\nu}\phi^{\dagger}(x')]\;\partial^{\mu}\phi^{\dagger}(x)
\\[10pt]
&\quad
-\phi(x)\,[\partial^{\mu}\phi^{\dagger}(x),\phi^{\dagger}(x')]\;\partial'^{\nu}\phi(x')
-\phi(x)\,\phi^{\dagger}(x')\,[\partial^{\mu}\phi^{\dagger}(x),\partial'^{\nu}\phi(x')]
\\[4pt]
&\quad
- [\phi(x),\phi^{\dagger}(x')] \;\partial^{\mu}\phi^{\dagger}(x)\,\partial'^{\nu}\phi(x')
- \phi^{\dagger}(x')\,[\phi(x),\partial'^{\nu}\phi(x')]\;\partial^{\mu}\phi^{\dagger}(x)
\\[10pt]
&\quad
-\phi^{\dagger}(x)\,[\partial^{\mu}\phi(x),\phi(x')]\;\partial'^{\nu}\phi^{\dagger}(x')
-\phi^{\dagger}(x)\,\phi(x')\,[\partial^{\mu}\phi(x),\partial'^{\nu}\phi^{\dagger}(x')]
\\[4pt]
&\quad
-[\phi^{\dagger}(x),\phi(x')]\;\partial^{\mu}\phi(x)\,\partial'^{\nu}\phi^{\dagger}(x')
- \phi(x')\,[\phi^{\dagger}(x),\partial'^{\nu}\phi^{\dagger}(x')]\;\partial^{\mu}\phi(x)
\\[10pt]
&\quad
+\phi^{\dagger}(x)\,[\partial^{\mu}\phi(x),\phi^{\dagger}(x')]\;\partial'^{\nu}\phi(x')
+\phi^{\dagger}(x)\,\phi^{\dagger}(x')\,[\partial^{\mu}\phi(x),\partial'^{\nu}\phi(x')]
\\[4pt]
&\quad
+[\phi^{\dagger}(x),\phi^{\dagger}(x')]\;\partial^{\mu}\phi(x)\,\partial'^{\nu}\phi(x')
+ \phi^{\dagger}(x')\,[\phi^{\dagger}(x),\partial'^{\nu}\phi(x')]\;\partial^{\mu}\phi(x)
\\[8pt]
&\neq 0.
\end{aligned}
这意味着局域测量信息传播超光速,所以必须引起反粒子来保护因果律,所以 QFT 是一个好的理论。
2)massive vector field and spinor field theory
massive vector field 的 Lagrangian 为
\begin{aligned}{\color{blue}\mathcal{L}=-\frac{1}{2}F^{\dagger}_{\mu\nu}F^{\mu\nu}+m^2A^{\dagger}_{\mu}A^{\mu}}\end{aligned}
带入 Lagrange equation\begin{aligned} \partial_{\nu}\frac{\partial\mathcal{L}}{\partial(\partial_{\nu}A_{\mu})}=\frac{\partial{\mathcal{L}}}{\partial A_{\mu}} \end{aligned},其中\begin{aligned} F_{\mu\nu}=\partial_{\mu}A_{\nu}-\partial_{\nu}A_{\mu},F^{\dagger}_{\mu\nu}=\partial_{\mu}A^{\dagger}_{\nu}-\partial_{\nu}A^{\dagger}_{\mu}, \frac{\partial\mathcal{L}}{\partial A_{\mu}}=m^2A^{\mu\dagger}, \partial_{\nu}\frac{\partial\mathcal{L}}{\partial(\partial_{\nu}A_{\mu})}=\partial_{\nu}\big(-\frac{1}{2}\cdot2F^{\dagger\nu\mu})=-\partial_{\nu}F^{\dagger\nu\mu} \end{aligned},类似地对\begin{aligned}A^{\dagger}_{\mu}\end{aligned}进行同样的操作,可以得出动力学方程,即
\begin{aligned}
\partial_{\nu}F^{\dagger\nu\mu}+m^2(A^{\dagger\mu})&=0
\\ \partial_{\nu}F^{\nu\mu}+m^2(A^{\mu})&=0
\end{aligned}
我们将其写成至于\begin{aligned}A\end{aligned}的形式,并写出其分量的形式,\begin{aligned} \partial_{\nu}\big(\partial^{\nu}A^{\mu}-\partial^{\mu}A^{\nu}\big)+m^2A^{\mu}=(m^2+\partial^2)A^{\mu}-\partial^{\mu}(\partial_{\nu}A^{\nu})=0 \end{aligned},即
\boxed{\begin{aligned}
{\color{red}\Big[(\partial^2+m^2)g_{\mu\nu}-\partial_{\mu}\partial{_\nu}\Big]A^{\nu}}&\color{red}=0\\
{\color{red}\Big[(\partial^2+m^2)g_{\mu\nu}-\partial_{\mu}\partial_{\nu}\Big]A^{\dagger\nu}}&\color{red}=0
\end{aligned}}
spinor field theory 的 Lagrangian 为
\begin{aligned}
{\color{blue}\mathcal{L}=\bar{\psi}(i\bcancel\partial-m)\psi}
\end{aligned}
同理,可以得出对应的动力学方程为
\boxed{\begin{aligned}
{\color{blue}\big(i\bcancel\partial-m)\psi}&=\color{blue}0\\
\color{blue}\bar{\psi}(i^{\leftarrow}{\bcancel{\partial}}+m)&\color{blue}=0
\end{aligned}}
massive vector field operator 为
\begin{cases}\begin{aligned}
A_{\mu}(x)=\int d\tilde{p}\sum_{\lambda=0,\pm 1 }\Bigg(a(p,\lambda)\xi_{\mu}(p,\lambda)e^{-ip\cdot x}+b^{\dagger}(p,\lambda)\xi^{*}_{\mu}(p,\lambda)e^{i p\cdot x}\Bigg)\\
A_{\mu}^{\dagger}(x)=\int d\tilde{p}\sum_{\lambda=0,\pm1}\Bigg(a^{\dagger}(p,\lambda)\xi^{*}_{\mu}(p,\lambda)e^{ip\cdot x}+b(p,\lambda)\xi_{\mu}(p,\lambda)e^{-ip\cdot x}\Bigg)
\end{aligned}\end{cases}
其中,\begin{aligned}\xi_{\mu}(p,\lambda)\end{aligned}是极化矢量,其中包含自旋信息。它满足动力学方程,以第一个式子为例,有
\begin{aligned}
\big[(\partial^2+m^2)g_{\mu\nu}-\partial_{\mu}\partial_{\nu}\big]A^{\nu}(x)&=\int d\tilde{p}\sum_{\lambda=0,\pm 1}\left((-p^2+m^2)g_{\mu\nu}+p_{\mu}p_{\nu}\right)\Bigg(a(p,\lambda)\xi_{\mu}(p,\lambda)e^{-ip\cdot x}+b^{\dagger}(p,\lambda)\xi^{*}_{\mu}(p,\lambda)e^{i p\cdot x}\Bigg)=0
\end{aligned}
原因是因为\begin{aligned}p^2=m^2\end{aligned}。对于\begin{aligned}A^{\dagger}_{\mu}\end{aligned}类似,同样有\begin{aligned} [(\partial^2+m^2)g_{\mu\nu}-\partial_{\mu}\partial_{\nu}]A^{\dagger\nu}=0 \end{aligned}。
对于 spinor field operator 为
\begin{aligned}
\psi(x)&= \int d\tilde{p}\sum_{s=\pm\frac{1}{2}}\Bigg(a(p,s)u(p,s)e^{-ip\cdot x}+b^{\dagger}(p,s)v(p,s)e^{ip\cdot x}\Bigg)\\
\bar{\psi}(x)&=\int d\tilde{p}\sum_{s=\pm\frac{1}{2}}\Bigg(a^{\dagger}(p,s)\bar{u}(p,s)e^{ip\cdot x}+b(p,s)\bar{v}(p,s)e^{-ip\cdot x}\Bigg)
\end{aligned}
满足动力学方程
\begin{aligned}
(i\bcancel{\partial}-m)\psi(x)&=\int d\tilde{p}\sum_{s=\pm\frac{1}{2}}\Bigg(a(p,s)(\cancel{p}-m)u(p,s)e^{-ip\cdot x}-b^{\dagger}(p,s)(\cancel{p}+m)v(p,s)e^{ip\cdot x}\Bigg)\\
\bar{\psi}(x)(i{\bcancel{\partial}}^{\leftarrow}+m)&=\int d\tilde{p}\sum_{s=\pm\frac{1}{2}}\Bigg(a^{\dagger}(p,s)\bar{u}(p,s)(-\cancel{p}+m)e^{ip\cdot x}+b(p,s)\bar{v}(p,s)(\cancel{p}+m)e^{-ip\cdot x}\Bigg)
\end{aligned}
在壳条件要去\begin{aligned}p^2=m^2\end{aligned},(\cancel p-m)u(p,s)=(\cancel p+m)v(p,s)=0,\bar{u}(p,s)(\cancel{p}+m)=\bar{v}(p,s)(\cancel{p}+m)=0,满足动力学方程。
massive vector field operator 的量子化条件为
\begin{aligned}\color{red}[a(p,\lambda),a^{\dagger}(p',\lambda')]=[b(p,\lambda),b^\dagger(p',\lambda')]=(2\pi)^32E_p\delta^3(\vec p-\vec p')\delta_{\lambda\lambda'}\end{aligned}
spinor field 的量子化条件为
\color{red}\{a(p,s),a^{\dagger}(p',s')\}=\{b(p,s),b^{\dagger}(p',s')\}=(2\pi)^3(2E_p)\delta^3(\vec p-\vec p')\delta_{ss'}
其他对易子皆为\begin{aligned} 0\end{aligned}。
\begin{aligned}\end{aligned}massive vector field Hamlitonian
系统的正则动量为\begin{aligned} \pi^{\mu}=\frac{\partial\mathcal{L}}{\partial(\partial_0A_{\mu})}=F^{\dagger\mu 0},\pi^{\dagger\mu}=F^{\mu 0} \end{aligned}。\begin{aligned}\pi^{0}=\pi^{\dagger 0}=0\end{aligned},所以\begin{aligned}A_0,A^{\dagger}_0\end{aligned}是动力学解耦的,有\begin{aligned}\pi_{i}=E^{\dagger}_i,\pi^{\dagger}_i=E_i\end{aligned},所以系统的 Hamlitonian 为
\begin{aligned}
\mathcal{H}&=\pi_i\partial_0A^{i}+\pi^{\dagger}_i\partial_0A^{\dagger i}-\mathcal{L}\\
&=\vec E^{\dagger}\cdot\vec E+\vec B^{\dagger}\cdot\vec B+m^2(\vec {A}^{\dagger}\vec{A}+A^{\dagger}_0A_0)
\end{aligned}
其中,\begin{aligned}B_i=\epsilon_{ijk}\partial_jA_k\end{aligned},可得
\begin{aligned}
H&=
\int d^3x:\mathcal{H}:\\&=\int d\tilde{p}\sum_{\lambda}E_p\Bigg(a^{\dagger}(p,\lambda)a(p,\lambda)+b^{\dagger}(p,\lambda)b(p,\lambda)\Bigg)
\end{aligned}
所以,该理论描述的是 spin 为\begin{aligned}1\end{aligned}的粒子与反粒子系统。
对于 spinor field,它的正则动量为\begin{aligned}\pi=\frac{\partial\mathcal{L}}{\partial(\partial_0\psi)}=i\gamma^{+}\end{aligned},Hamlitonian 为
\begin{aligned}\mathcal{H}&=\pi\partial_0\psi-\mathcal{L}\\&=\psi^{\dagger}(-i\vec{\alpha}\cdot\nabla+\beta m)\psi\end{aligned}
这里\begin{aligned}\vec{\alpha}=\gamma^0\vec{\gamma},\beta=\gamma^0\end{aligned},所以系统的 Hamliton 为
\begin{aligned}
\int d^3x:\mathcal{H}:=\int d\tilde{p}\sum_{s=\pm}E_p\Bigg(a^{\dagger}(p,s)a(p,s)-b^{\dagger}(p,s)b(p,s)\Bigg)
\end{aligned}
所以这是描述自旋为\begin{aligned}\frac{1}{2}\end{aligned}的费米子场。
欢迎来到这里!
我们正在构建一个小众社区,大家在这里相互信任,以平等 • 自由 • 奔放的价值观进行分享交流。最终,希望大家能够找到与自己志同道合的伙伴,共同成长。
注册 关于