最大后验(Maximum a Posteriori,MAP)概率估计详解

最大后验(Maximum A Posteriori,MAP)概率估计

注:阅读本文需要贝叶斯定理与最大似然估计的部分基础

  最大后验(Maximum A Posteriori,MAP)估计可以利用经验数据获得对未观测量的点态估计。它与Fisher的最(极)大似然估计(Maximum Likelihood,ML)方法相近,不同的是它扩充了优化的目标函数,其中融合了预估计量的先验分布信息,所以最大后验估计可以看作是正则化(regularized)的最大似然估计。

  想要了解最大后验(MAP)概率估计,需要学会贝叶斯定理以及极大似然估计(Maximum Likelihood Estimate,MLE)。


1.贝叶斯定理
  贝叶斯定理由英国数学家贝叶斯 ( Thomas Bayes 1702-1761 ) 发展,用来描述两个条件概率之间的关系。
  这里篇博客主要说的并不是贝叶斯定理,因此,只在这里提及需要用到的有关于贝叶斯的部分知识。
  假设,现在有两个一定概率发生的事件A和B,且它们之间存在一定的关系。

   -   P(A)表示事件A发生的概率。
   -   P(B)表示事件A发生的概率。
   -   P(A | B)表示事件B已经发生的情况下,事件A发生的概率。
   -   P(B | A)表示事件A已经发生的情况下,事件B发生的概率。
  
  理解了以上内容,就可以看一下数学上的贝叶斯定理

贝叶斯定理的公式


2.极大似然估计
  极大似然估计方法(Maximum Likelihood Estimate,MLE)也称为最大概似估计或最大似然估计,是求估计的方法之一。(还有矩估计等)
  简单来讲,极大似然估计就是给定模型,然后通过收集数据,求该模型的参数。例如,投10次特殊的硬币(给定模型),出现6次正面4次反面(请注意,这里10次结果有顺序,后面所有的投硬币结果,都有顺序)(收集数据),现在要估计投这枚硬币出现正面的概率(求参数)。
  由于提及“投硬币”,一般人的第一印象就是投到正面和反面的概率都是0.5。不过这样不利于我们接下来的学习,这里,我们需要摆脱以往的直觉,该硬币是特殊的,正反的概率并一定是0.5。
  那么,我们根据以上收集的数据先凭借直觉猜一下,很明显,由于投了10次,出现了6次正面,一般人都会猜投硬币出现正面的概率最有可能是0.6,当然也不排除其他的可能。
  而最大似然估计,简单来讲,就是用数学方法来解释你这种直觉,它就是计算出可能性最大的结果。
  上面投硬币的例子,很明显可以看出,这个模型服从二项分布,即进行多次实验,每次实验只有两种可能。用x0,x1,…,x9表示这10次投硬币的结果,用θ表示投该硬币出现正面的概率,那么把我们的直觉写成用数学写出来就是似然函数,可表示成:

在这里插入图片描述

  当然,不要被似然函数吓到了,他就是一个名字而已,就上面那个图片中的函数,相信你能看懂。而最大似然估计,顾名思义,就是要最大化这个似然函数,说得更简单点,就是给你一个函数,求它的极大值点。即

在这里插入图片描述

  对似然函数取对数,不会影响该函数的单调性,从而不会影响最后的计算的极值,也可以在一定程度上减少因计算而带来的误差,还可以极大的简化计算
  此时求解取对数的似然函数的极大值点,就是似然函数的极大值点。由于似然函数是先单调递增,然后再单调递减的,因此,取对数的似然函数导数为0的点,即是似然函数或取对数的似然函数的极大值点(在这里也是最大值点
  最大似然估计可以转化为求下面式子的解:

在这里插入图片描述

  下面简单说一下求解方法:

  这里以上面得例题为例,首先求出最大似然函数
对其进行极大似然估计

  然后对似然函数取对数,如下所示:


在这里插入图片描述

  最后对取对数的似然函数取进行求导,在函数的导数为0的点,即为最大似然的估计值,如下所示:

在这里插入图片描述
在这里插入图片描述

  写到这里,我们就得到了该最大似然的估计值,即投该硬币出现正面的概率θ=0.6。
  以上就是最大似然估计的方法,如果未知参数有多个,则需要用取对数的似然函数对每个参数进行求偏导,使得所有偏导均为0的值,即为该函数的极值点,一般也是其最大似然估计值。


3.最大后验概率估计
  对于最大后验概率估计,我们先进行通俗简单的理解,还是以刚才的那个问题为例,投10次硬币,结果分别是x0,x1,…,x9,出现了6次正面,4次反面。
  现在,有两个人A和B,其中A觉得那枚硬币,它就是一个一般的硬币,出现正面的概率θ = 0.5。而B觉得,它是一个特殊的硬币,出现正面的概率θ = 0.6。
  最大后验概率就是把他们的假设都进行计算(验算),然后选择其中假设最好的一个,当作最大后验概率。
  它首先计算A的假设,假设出现正面的概率θ = 0.5,那么此时,投10次该硬币,出现6次正面的概率则是

在这里插入图片描述

  然后再来计算一下B的假设,假设出现正面的概率θ = 0.6,那么此时,投10次该硬币,出现6次正面的概率则是

在这里插入图片描述

  通过计算,我们可以很直观的发现,相比于A的假设,B的假设准确的概率更大一下,当然,这里也不能说B绝对是正确的,只是B是对的可能性更大。我们一般也更相信B的猜测。
  当然,上面的例子只是对最大后验概率估计进行简单的理解。显然,我们还可以有其他假设,比如假设出现正面的概率θ = 0.7。由于θ的取值范围在0到1之间,有无数种假设,但我们不可能每种假设都进行计算,这个时候,就需要利用一些简单的数学方法,求出最大的那一个,即为最大后验概率。
  最大后验概率估计就是在已知一系列结果的情况下,求参数可能的最大的那一个,也就是求解下面式子:

在这里插入图片描述

  可能有人不知道为什么要写这个式子,我们来简单通俗的理解一下上面式子的含义,就是在序列x0 , x1 , … , xn已知的情况下,θ等于某个值的概率(这里不懂的,参看第一节),然后求出θ一个个的取完所有的值的所有概率,选择其中使概率最大的那一个的θ,即为最大后验概率。
  然而该式一般不能通过蛮力法直接求解,需要利用贝叶斯公式,经过一系列变换求解,过程如下:


在这里插入图片描述

  上面这个式子中P(x0 , x1 , … , xn)表示投n次硬币,产生x0 , x1 , … , xn结果的概率,其中每个x均有两种可能,要么是正面,要么是反面。但是由于已经投了n次硬币,统计了每一次的结果,即x0 , x1 , … , xn 均已知,相当于这个事件已经发生了,所以在这里P(x0 , x1 , … , xn) = 1。
  还需要注意的是,这里的P(x0 , x1 , … , xn | θ)就是前面第二节中极大似然估计的似然函数。这里的P(θ)表示的是出现正面的概率,简单理解就是,我们最开始就需要对θ设置一个概率分布,例如可以假设它在0到1之间均匀分布,即它可以等概率的取0到1之间任意值,此时,最大后验概率估计等价于最大似然估计。假如我们不考虑太多,就觉得该硬币的出现正面的概率最接近0.5,与0.5相差越大则越不可信,那么可以将θ的概率分布假设为均值为0.5,方差为σ^2的正态分布。
  所以该题中的最大后验概率估计,也等价于下式

在这里插入图片描述

  对于刚才的投硬币问题,我们将θ的概率分布假设为均值为0.5,方差为1的正态分布,即θ的密度函数可表示为:


在这里插入图片描述

  最大后验概率的求解与最大似然估计有些类似,也是先对函数取对数,然后再求导数为0的极值点,即为最大后验估计的概率。
  具体求解过程如下:


在这里插入图片描述 在这里插入图片描述

  然后求它的极值点,即导数为0的点

在这里插入图片描述
在线求解一元三次方程链接

  显然在这道题中θ = 0.5977,也就是说,当θ的密度函数为均值为0.5,方差为1的正态分布时,投该硬币出现正面的概率为0.5977时是可能性最大的。
  说到这里,最大后验概率估计的方法,也差不多说完了。下面按照我所学,以容易理解的方式总结一下:
  假设你已经理解了极大似然估计,那么,最大后验的实质就是对参数的每一个可能的取值,都进行极大似然估计,并根据这个取值可能性的大小,设置极大似然估计的权重,然后选择其中最大的一个,作为最大后验估计的结果。

  注:“根据取值的可能性设置权重”:例如投硬币问题中,有人认为正面出现的概率越接近0.5越好,所以将参数取值的可能概率设置为均值为0.5,方差为1的高斯分布。

  • 190
    点赞
  • 353
    收藏
    觉得还不错? 一键收藏
  • 13
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 13
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值