Closed
Description
描述问题 Describe the problem
如下面视频所示, 当我将公式块的悬浮窗移动到一边, 并试图在悬浮窗中输入/删除内容时, 悬浮窗会自动跳回到默认位置, 不确定是否是因为公式块过长导致.
截屏或者录屏演示 Screenshot or screen recording presentation
siyuan1.mp4
视频中使用的公式块:
\begin{aligned}
\frac{\partial f_{CE}}{\partial \hat{\boldsymbol{y}}_{i,k}} &= -\frac{1}{n}\sum\limits_{i=1}^n\sum\limits_{k=1}^{n_y} \boldsymbol{y}_{i,k} \frac{1}{\hat{\boldsymbol{y}}_{i,k}} \\
\frac{\partial \hat{\boldsymbol{y}}_{i,j}}{\partial \boldsymbol{z}_{2,i,k}} &= \hat{\boldsymbol{y}}_{i,j}(\mathbb{I}\left \{ j=k\right \}-\hat{\boldsymbol{y}}_{i,k})\\
\frac{\partial \boldsymbol{z}_{2,i,j}}{\partial \boldsymbol{b}^{(2)}_k} &= \mathbb{I}\left\{ j=k\right\}\\
\frac{\partial {\boldsymbol{z}}_{2,i,j}}{\partial \boldsymbol{W}_{j,k}} &= \hat{ h}_{1,i,k}\\
\frac{\partial \boldsymbol{z}_{2,i,j}}{\partial \hat{ \boldsymbol{h}}_{1,i,k}} &= \boldsymbol{W}^{(2)}_{j,k}\\
\frac{\partial \hat{ \boldsymbol{h}}_{1,i,j}}{\partial \beta} &= 1\\
\frac{\partial \hat{ \boldsymbol{h}}_1}{\partial \gamma} &= \frac{\boldsymbol{h}_{1,i,j}-\boldsymbol{\mu}_j}{\sqrt{\boldsymbol{\sigma}_j^2 + \epsilon}}\\
\frac{\partial \hat{ \boldsymbol{h}}_{1,i,j}}{\partial \boldsymbol{h}_{1,i,j}} &= \frac{\gamma}{\sqrt{\boldsymbol{\sigma}^2_j + \epsilon}} \\
\frac{\partial \hat{ \boldsymbol{h}}_{1,i,j}}{\partial \boldsymbol{\mu}_{j}} &= - \frac{\gamma}{\sqrt{\boldsymbol{\sigma}^2_j + \epsilon}} \\
\frac{\partial \boldsymbol{\mu}_{i}}{\partial \boldsymbol{h}_{1,j,i}} &= \frac{1}{n} \\
\frac{\partial \hat{ \boldsymbol{h}}_{1,i,j}}{\partial \boldsymbol{\sigma}_j} &= 2\gamma\boldsymbol{\sigma}_j\frac{\boldsymbol{h}_{1,i,j}-\boldsymbol{\mu}_j}{\sqrt{\boldsymbol{\sigma}^2_j + \epsilon}} \\
\frac{\partial \boldsymbol{\sigma}_i}{\partial \boldsymbol{h}_{1,j,i}} &= \frac{2}{n}(\boldsymbol{h}_{1,j,i}-\boldsymbol{\mu}_i) + \frac{2}{n}\sum\limits_{i=1}^{n}(\boldsymbol{h}_{1,j,i}-\boldsymbol{\mu}_i)\frac{1}{n}\\
\frac{\partial \boldsymbol{h}_{1,i,j}}{\partial \boldsymbol{z}_{1,i,j}} &= \mathbb{I}\left \{ \boldsymbol{z}_{1,i,j}\geq 0\right \}\\
\frac{\partial \boldsymbol{z}_{1,i,j}}{\partial \boldsymbol{b}^{(1)}_k} &= \mathbb{I}\left \{ j=k\right \}\\
\frac{\partial \boldsymbol{z}_{1,i,j}}{\partial \boldsymbol{W}^{(1)}_{j,k}} &= \boldsymbol{x}_{i,k}
\end{aligned}
版本环境 Version environment
- Version: v1.9.8
- Operating system: Windows
Metadata
Metadata
Assignees
Type
Projects
Relationships
Development
No branches or pull requests
Activity