Skip to content

公式块悬浮窗在输入时会跳回默认位置 #4572

Closed
@coderlemon17

Description

@coderlemon17

描述问题 Describe the problem

如下面视频所示, 当我将公式块的悬浮窗移动到一边, 并试图在悬浮窗中输入/删除内容时, 悬浮窗会自动跳回到默认位置, 不确定是否是因为公式块过长导致.

截屏或者录屏演示 Screenshot or screen recording presentation

siyuan1.mp4

视频中使用的公式块:

\begin{aligned} 
\frac{\partial f_{CE}}{\partial \hat{\boldsymbol{y}}_{i,k}} &= -\frac{1}{n}\sum\limits_{i=1}^n\sum\limits_{k=1}^{n_y} \boldsymbol{y}_{i,k} \frac{1}{\hat{\boldsymbol{y}}_{i,k}} \\

\frac{\partial \hat{\boldsymbol{y}}_{i,j}}{\partial \boldsymbol{z}_{2,i,k}} &= \hat{\boldsymbol{y}}_{i,j}(\mathbb{I}\left \{ j=k\right \}-\hat{\boldsymbol{y}}_{i,k})\\
\frac{\partial \boldsymbol{z}_{2,i,j}}{\partial \boldsymbol{b}^{(2)}_k} &= \mathbb{I}\left\{ j=k\right\}\\

\frac{\partial {\boldsymbol{z}}_{2,i,j}}{\partial \boldsymbol{W}_{j,k}}  &= \hat{ h}_{1,i,k}\\

\frac{\partial \boldsymbol{z}_{2,i,j}}{\partial \hat{ \boldsymbol{h}}_{1,i,k}} &= \boldsymbol{W}^{(2)}_{j,k}\\

\frac{\partial \hat{ \boldsymbol{h}}_{1,i,j}}{\partial \beta} &= 1\\

\frac{\partial \hat{ \boldsymbol{h}}_1}{\partial \gamma} &= \frac{\boldsymbol{h}_{1,i,j}-\boldsymbol{\mu}_j}{\sqrt{\boldsymbol{\sigma}_j^2 + \epsilon}}\\

\frac{\partial \hat{ \boldsymbol{h}}_{1,i,j}}{\partial \boldsymbol{h}_{1,i,j}} &= \frac{\gamma}{\sqrt{\boldsymbol{\sigma}^2_j + \epsilon}} \\

 \frac{\partial \hat{ \boldsymbol{h}}_{1,i,j}}{\partial \boldsymbol{\mu}_{j}} &= - \frac{\gamma}{\sqrt{\boldsymbol{\sigma}^2_j + \epsilon}} \\

\frac{\partial \boldsymbol{\mu}_{i}}{\partial \boldsymbol{h}_{1,j,i}} &= \frac{1}{n} \\

 \frac{\partial \hat{ \boldsymbol{h}}_{1,i,j}}{\partial \boldsymbol{\sigma}_j} &= 2\gamma\boldsymbol{\sigma}_j\frac{\boldsymbol{h}_{1,i,j}-\boldsymbol{\mu}_j}{\sqrt{\boldsymbol{\sigma}^2_j + \epsilon}} \\

\frac{\partial \boldsymbol{\sigma}_i}{\partial \boldsymbol{h}_{1,j,i}} &= \frac{2}{n}(\boldsymbol{h}_{1,j,i}-\boldsymbol{\mu}_i) + \frac{2}{n}\sum\limits_{i=1}^{n}(\boldsymbol{h}_{1,j,i}-\boldsymbol{\mu}_i)\frac{1}{n}\\

\frac{\partial \boldsymbol{h}_{1,i,j}}{\partial \boldsymbol{z}_{1,i,j}} &=  \mathbb{I}\left \{ \boldsymbol{z}_{1,i,j}\geq 0\right \}\\


\frac{\partial \boldsymbol{z}_{1,i,j}}{\partial \boldsymbol{b}^{(1)}_k} &= \mathbb{I}\left \{ j=k\right \}\\


\frac{\partial \boldsymbol{z}_{1,i,j}}{\partial \boldsymbol{W}^{(1)}_{j,k}} &= \boldsymbol{x}_{i,k}

\end{aligned}

版本环境 Version environment

  • Version: v1.9.8
  • Operating system: Windows

Activity

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Metadata

Metadata

Assignees

Type

No type

Projects

No projects

Relationships

None yet

    Development

    No branches or pull requests

      Participants

      @88250@Vanessa219@coderlemon17

      Issue actions

        公式块悬浮窗在输入时会跳回默认位置 · Issue #4572 · siyuan-note/siyuan