What’s new in SQL:2011

Fred Zemke, Oracle Corporation, fred.zemke@oracle.com

ABSTRACT

SQL:2011 was published in December 2011,
replacing the former version (SQL:2008) as the most
recent update to the SQL standard for relational
databases. This paper surveys the new non-temporal
features of SQL:2011.

1. INTRODUCTION

SQL (pronounced es-cue-el) is the relational data-
base standard published jointly by ISO (the Interna-
tional Organization for Standardization) and IEC (the
International Electrotechnical Commission). In Decem-
ber 2011, ISO/IEC published the latest edition of SQL,
SQL:2011.

Many readers are perhaps most familiar with SQL-
86, SQL-89 and SQL-92 published by ANSI (the Amer-
ican National Standards Institute). Subsequently, the
SQL standard has been developed internationally under
the auspices of ISO/IEC. Since SQL-92, the major revi-
sions of the SQL standard have been SQL:1999,
SQL:2003, SQL:2008, and now SQL:2011. Articles in
SIGMOD Record on prior versions of SQL may be
found in references [10] - [12].

The SQL standard is published in multiple volumes,
called parts. Currently there are nine parts, numbered 1,
2,3,4,9,10, 11, 13 and 14. (The gaps are for parts that
have been withdrawn for various reasons; once a part
number is issued, it is not recycled). Parts 3 and follow-
ing were each published for the first time between the
major release years (i.e., not 1992, 1999, 2003, 2008 or
2011) and subsequently “progressed” together with
other extant parts. The complete list of the parts of SQL
is found in the references [1] - [9].

By far the most important part is 2, Foundation [2],
which is also the largest at 1470 pages (about 100 pages
larger than in SQL:2008). Only five of the parts were
revised in SQL:2011; for the other four parts, the ver-
sion published in SQL:2008 remains in effect. This
paper concentrates on the new features in SQL/Founda-
tion:2011.

The SQL standard specifies mandatory and optional
features of SQL. The mandatory features, known as
Entry Level in SQL-92 and Core in the subsequent
international versions, have not changed appreciably
since SQL:1999. Thus the growth in the standard has

SIGMOD Record, March 2012 (Vol. 41, No. 1)

been in the optional features.

Perhaps the most important new features in
SQL:2011 are in the area of temporal databases. This
article does not have enough space to adequately cover
that topic, so it will be discussed in a future article.

The most important new non-temporal features of
SQL:2011 are the following:

+ DELETE in MERGE

* Pipelined DML

* CALL enhancements

* Limited fetch capability

Collection type enhancements
* Non-enforced table constraints
* Window enhancements

Additionally, there are new DDL features to improve
the usability of generated and identity columns, which
are not discussed further in this article due to space lim-
itations.

2. DELETE in MERGE

MERGE is a data manipulation command introduced
in SQL:2003 and enhanced in SQL:2008. Here is an
example that is permitted by SQL:2008. Suppose that
Inventory (Part, Qty) is a table that lists parts
and quantity on hand, and Changes (Part, Qty,
Action) is atable of changes to be applied to
Inventory. The Action column has two values,
with the following meanings:

* 'Mod' :add Changes.Qtyto Inventory.Qty
if the part already exists in Inventory.

* 'New' :addanew row to Inventory using the
values of Changes.Part and Changes.Qty.

In SQL:2008 this might be accomplished using the
following statement:

MERGE INTO Inventory AS I
USING Changes AS C
ON I.Part = C.Part
WHEN MATCHED AND
I.Action = 'Mod'
THEN UPDATE
SET Qty = I.Qty + C.Qty
WHEN NOT MATCHED AND
I.Action = 'New'
THEN INSERT (Part, OQty)
VALUES (C.Part, C.Qty)
In the preceding example, the rows of Inventory

67

and Changes are matched using the join condition
I.Part = C.Part. Whenarow of Changes
matches a row of Inventory, and Action is Mod,
then the row of Inventory is updated. When a row of
Changes has no match in Inventory, and Action
is New, then a new row is inserted in Inventory.
SQL:2011 has added the ability to perform DELETE
within MERGE. This permits the following additional
Action:
e 'Dis’ :delete the part from Inventory since it
has been discontinued.
This additional value of Action can be supported
with the following command:
MERGE INTO Inventory AS I
USING Changes AS C
ON I.Part = C.Part
WHEN MATCHED AND
I.Action = 'Mod'
THEN UPDATE
SET Oty = Oty + C.Qty
WHEN MATCHED AND
I.Action = 'Dis'
THEN DELETE
WHEN NOT MATCHED AND
I.Action = 'Mod'
THEN INSERT
VALUES (C.Part, C.Qty)
The new capability in this example is the underlined
DELETE, which deletes a row from Inventory.

3. Pipelined DML

Pipelined DML gives the ability to perform data
change commands (INSERT, UPDATE, DELETE,
MERGE) within a SELECT command.

A data change command has one or two “delta
tables” containing the specific rows that are touched. A
DELETE has only an old delta table (the rows to be
deleted). An INSERT has only a new delta table (the
rows to be inserted). An UPDATE has both an old delta
table and a new delta table; the old delta table contains
the “before images” and the new delta table contains the
“after images”. The delta table(s) of a MERGE are the
unions of the old delta tables and the new delta tables of
the INSERT, UPDATE and DELETE commands found
within the MERGE.

Pipelined DML provides access to either the old
delta table or the new delta table of a data manipulation
command within a SELECT. For example,

SELECT Oldtable.Empno
FROM OLD TABLE (DELETE FROM Emp
WHERE Deptno = 2)
AS Oldtable

68

In the preceding example, the FROM clause has a
DELETE command nested within it. The key words
OLD TABLE indicate that rows from the old delta table
of this DELETE are desired. The DELETE is executed,
and afterwards, the rows of the old delta table are used
to create the result, which is a list of Empno of the
deleted rows.

The key words NEW TABLE may be used to access
the new delta table of an INSERT, UPDATE or MERGE,
for example

SELECT Newtable.Empno
FROM NEW TABLE (UPDATE EMP
SET Salary = 0
WHERE Empno > 100)
AS Newtable

The preceding example sets certain salaries to 0 and
returns a result consisting of the Empno of those rows
whose salary is set to 0.

When using NEW TABLE, the new delta table is
computed by constructing the set of new candidate rows
as indicated by the INSERT, UPDATE or MERGE state-
ment. New candidate rows may be modified by
BEFORE triggers, after which they are applied to the
target table. The new delta table is a snapshot of this
point in query processing. There are later stages (cas-
caded referential actions and AFTER triggers) whose
effects are not captured in the new delta table. Thus, if
there are applicable cascaded referential actions or
AFTER triggers, the final value of the target table may
differ from the result of NEW TABLE. If the user is con-
cerned about these, the user can specify instead FINAL
TABLE. There is no “final delta table”, so the FINAL
TABLE option merely raises an exception if any cas-
caded referential action or AFTER trigger touches the
target table.

4. CALL enhancements

The CALL statement, introduced in Part 4 PSM in
1996 and subsequently incorporated in Part 2 Founda-
tion in 1999, is used to invoke an SQL-invoked proce-
dure. Here is an example of how to create an SQL-
invoked procedure using features prior to SQL:2011:

CREATE PROCEDURE P (
IN A INTEGER,
OUT B INTEGER) ...

The ellipsis omits details of the syntax that specify
such things as the host language of the procedure, the
path to use to invoke it, etc. This example defines a pro-
cedure P with two integer parameters A and B; A is an
input parameter and B is an output parameter. It is also
possible to declare a parameter that is both input and
output using the keyword INOUT.

SIGMOD Record, March 2012 (Vol. 41, No. 1)

Once P is defined, it can be invoked using a CALL
statement, like this:

CALL P (1, :MyVar)

Here MyVar might be the name of an embedded
variable that will receive the value assigned to the
parameter B of P.

SQL:2011 provides two enhancements to SQL-
invoked procedures:

* named arguments, and
* default input arguments.

Named arguments are illustrated in the following
example:

CALL P (B => :MyVar, A => 1)

This statement is equivalent to the first example of a
CALL statement. Using named arguments, the user can
specify the arguments in any order.

The new default input argument feature will be illus-
trated using the following procedure definition:

CREATE PROCEDURE P (
IN A INTEGER DEFAULT 2
OUT B INTEGER)

The underlined phrase DEFAULT 2 is new in
SQL:2011. This syntax may be used to specify the
default value of an input parameter (A in this example).
Output parameters, including in-out parameters, do not
support default values.

Given the preceding procedure definition, it might be
invoked like this:

CALL P (B => :MyVar)

Note that this invocation does not specify the argu-
ment A. Since A is omitted, the default value 2 will be
used, so the example is equivalent to

CALL P (B => :MYVAR, A => 2)
or

CALL P (2, :MyVar)

5. Limited fetch capability

A common application requirement is to fetch a sub-
set of a query. For example, in a table of scored data, it
might be desired to fetch only the top three results. Or
during application development, it may be desired to
fetch just ten arbitrary rows as a sample. Orin a
deployed application, it may be desired to fetch only as
many rows as fit in a limited display space. SQL:2008
introduced syntax to support such scenarios; this syntax
has been enhanced in SQL:2011.

An example supported by SQL:2008 is

SELECT Name, Salary
FROM Emp
ORDER BY Salary DESCENDING
FETCH FIRST 10 ROWS ONLY
The preceding example will obtain the top ten wage

SIGMOD Record, March 2012 (Vol. 41, No. 1)

earners from Emp. If there is a tie for the ninth, tenth
and eleventh place, it is nondeterministic which two of
the three ties will be returned. New in SQL:2011, one
can write
SELECT Name, Salary
FROM Emp
ORDER BY Salary DESCENDING
FETCH FIRST 10 ROWS WITH TIES
The underlined key words WITH TIES (replacing
the last key word ONLY in the first example) indicate
that any rows tied with the tenth row should also be
returned, making the result deterministic.
Another new feature is the ability to fetch a percent-
age of rows, as in this example:
SELECT Name, Salary
FROM Emp
ORDER BY Salary DESCENDING
FETCH FIRST 10 PERCENT ROWS ONLY
The PERCENT keyword may also be used with the
WITH TIES option.
The final new feature is the ability to start the
retrieval at a fixed offset, as in this example
SELECT Name, Salary
FROM Emp
ORDER BY Salary DESCENDING
OFFSET 10 ROWS
FETCH NEXT 10 ROWS ONLY
The underlined phrase OFFSET 10 ROWS speci-
fies to skip the first ten rows; thus this example will
retrieve the second ten highest wage earners from Emp.
The underlined noise word NEXT is actually a synonym
for FIRST (seen in prior examples) which the user
might prefer for readability when fetching at a positive
offset.

6. Collection type enhancements

SQL has two kinds of collection types: arrays (intro-
duced in SQL:1999) and multisets (introduced in
SQL:2003). Collection types are used to represent
homogenous collections of elements (every element of a
collection has the same data type, called the element
type of the collection).

An array is an ordered collection of values, the ele-
ments of the array. The cardinality of an array is the
number of elements in the array. An SQL array has
variable cardinality, from zero up to a declared maxi-
mum cardinality. Thus if C is a column of array type, the
cardinality of C may vary from row to row. An array
may be atomically null, in which case its cardinality is
regarded as null. A null array (cardinality null) is dis-
tinguished from both an empty array (cardinality 0) and
an array whose every element is null (cardinality > 0).

69

If an array has cardinality less than the declared maxi-
mum, then the unused cells of the array are non-existent
(they are not treated as implicitly null). Individual ele-
ments of an array can be referenced using square brack-
ets to enclose a subscript; for example, C [5] references
the fifth element of C.

Since SQL:1999, the cardinality of an array can be
learned using the CARDINALITY function. New in
SQL:2011, the maximum cardinality of an array can be
learned using the ARRAY MAX CARDINALITY func-
tion. This is useful, for example, in writing general-pur-
pose routines, avoiding the need to hard-code the
maximum cardinality.

SQL:1999 allows assignment to a subscripted ele-
ment of an array, which will either replace an existing
element of the array, or increase the cardinality of the
array. Any other change to an array value is done by
assigning to the array as a whole, i.e., replacing the
entire array. This meant that there was no way easy to
remove elements from an array. New in SQL:2011, the
function TRIM ARRAY can be used to remove elements
from the end of an array.

The other kind of collection type is multiset, which is
an unordered homogenous collection that permits dupli-
cates among the elements. There is no declared maxi-
mum cardinality for a multiset, though implementations
will have physical or architectural limits. Since a multi-
set is unordered, there is no subscript notation to address
an individual element.

New in SQL:2011, it is possible to define distinct
types that are sourced from collection types. Previously,
distinct types as introduced in SQL:1999 are user-
defined types sourced from a predefined type. For
example, a user might define Shoesize as a distinct
type sourced from INTEGER. A value of Shoesizeis
an INTEGER value, but without the built-in semantics;
for example, addition is not defined on Shoesize.
Instead, the user can define the semantics of Shoesize
by defining methods or other user-defined routines to
manipulate values of type Shoesize.

In SQL:1999, the only source types for distinct types
were predefined types. SQL:2011 now permits collec-
tion types as source types. For example, under
SQL:1999, the user could create a column or an SQL
variable that is an array of Shoesize, but could not
create a distinct type that is array of INTEGER. There is
no difference between an array of Shoesize and an
array of INTEGER at the storage level, but semantically,
SQL:1999 had no way to define methods on the array as
a whole, only on the elements of the array. SQL:2011
has filled this gap by allowing distinct types sourced
from collection types.

70

7. Non-enforced table constraints

Table constraints are declared restrictions on the pos-
sible values in rows of a table. There are three kinds:
unique constraints (requiring the value in a column or
set of columns to be unique across the rows of the table),
referential constraints (to enforce parent-child relation-
ships between tables) and check constraints (to enforce
a Boolean condition within each row, for example, that
hire date must be greater than birth date). Table con-
straints have been part of SQL since its inception in
SQL-86.

Under most circumstances, the user wishes con-
straints to be enforced, since they are vital to maintain-
ing the integrity of the data. However, there are
situations in which a user wishes to temporarily turn off
one or more constraint checks, such as bulk loads or rep-
lications. SQL-92 provided the ability to defer con-
straint checking to the end of a transaction. However,
this capability does not really address the bulk load sce-
nario, since the user will want to commit periodically
during a large data transfer as a precaution against a sys-
tem failure.

SQL:2011 has addressed this problem by providing
syntax to alter a constraint to be either enforced or not
enforced. By default, a constraint is enforced, but the
user can set it to be not enforced, for example, during a
bulk load. A non-enforced constraint is not checked,
not even at commit time. However, when a non-
enforced constraint is subsequently set to be enforced,
then the constraint will be checked on all the data. Gen-
erally, such enforcement is more efficient than doing it
incrementally during the load.

8. Window enhancements

Windows and window functions were first intro-
duced via an amendment in 2000 to SQL:1999, and
were incorporated directly in SQL/Foundation:2003 and
subsequent editions of the standard.

To review, a window allows a user to optionally par-
tition a data set, optionally order the rows of each parti-
tion, and finally specify a collection of rows (called the
window frame) that is associated with each row. The
window frame of a row R is some subset of the window
partition of R. For example, the window frame may
consist of all rows from the beginning of the partition up
through and including R, according to the window
ordering.

A window function is a function that computes a
value for a row R using the collection of rows in the
window frame of R. For example, an aggregate such as
SUM might be computed over a window, as in this exam-
ple:

SIGMOD Record, March 2012 (Vol. 41, No. 1)

SELECT Acctno, TransDate,
SUM (Amount) OVER
(PARTITION BY Acctno
ORDER BY TransDate
ROWS BETWEEN
UNBOUNDED PRECEDING
AND CURRENT ROW)
FROM Accounts
In the preceding example, Accounts is a table con-
taining data including Acctno, TransDate and
Amount. The OVER clause specifies the window,
which is partitioned by Acctno, ordered by Trans—
Date, and finally, for each row R, the window frame
consists of all rows from the beginning of the partition
through R. Thus this query might be used to provide
running account balances for each account number, in
order of transaction date.
SQL:2011 has added the following window enhance-
ments:
e NTILE
* Navigation within a window
¢ Nested navigation in window functions
* GROUPS option
These new features are described in the following
subsections.

8.1 NTILE

NTILE is a window function that apportions an
ordered window partition into some positive integer
number 7 of buckets, numbering the buckets from 1
through n. If the number of rows m in the partition is
not evenly divisible by #, then the extra rows are han-
dled by making the first » buckets one row larger, where
r is the remainder of the integer division m /n. For
example,

SELECT Name, NTILE(3)
OVER (ORDER BY Salary ASC)
AS Bucket

FROM Emp

In this example, suppose there are 5 employees. The
query asks to place them into 3 buckets. The remainder
of 5/3 is 2; therefore the first two buckets will have 2
rows and the last bucket will have 1 row. Suppose the
employees, in ascending order of Salary, are named
Joe, Mary, Tom, Alice, and Frank. Then Joe and Mary
are assigned to bucket 1, Tom and Alice to bucket 2, and
Frank to bucket 3.

8.2 Navigation within a window

Five window functions have been added to evaluate
an expression in a row R2 at interesting places in the
window frame of a current row R/ : LAG, LEAD,

NTH VALUE, FIRST7VALUE,andLAST7VALUE.

SIGMOD Record, March 2012 (Vol. 41, No. 1)

8.2.1 LAG and LEAD

LAG and LEAD are window functions that provide
access to a row R2 at some offset from the current row
R1 within the window frame of R/. For example, given
a time series of prices, suppose you wish to display a
Price and the Price immediately prior in the time
series. This can be done with this query:

SELECT Price AS CurPrice,

LAG (Price) OVER

(ORDER BY Tstamp) AS PrevPrice
FROM Data

In this example, the Price values in Data have
been ordered by the timestamp Tstamp. For each row
of Data, the result has two columns, CurPrice and
PrevPrice. CurPrice is the current row’s value of
Price and PrevPrice is the immediately preceding
value of Price.

The default offset, as in the preceding example, is 1
row. Other offsets may be specified as the second argu-
ment to LAG using an unsigned integer literal, for exam-
ple

SELECT Price AS CurPrice,

LAG (Price, 2) OVER

(ORDER BY Tstamp) AS PrevPrice2
FROM Data

The first n rows, where 7 is the offset, will have no
predecessor, and the LAG function will result in null by
default. A third optional argument may be used to spec-
ify a different default, like this:

SELECT Price AS CurPrice,

LAG (Price, 2, 0) OVER

(ORDER BY Tstamp) AS PrevPrice2a
FROM Data

In the preceding example, in the first two rows, the
value of PrevPrice2a is 0.

The final option on LAG is to compress out nulls
before offsetting. This is illustrated in the following:

SELECT Price AS CurPrice,
LAG (Price, 3, 0) IGNORE NULLS
OVER (ORDER BY Tstamp)
AS PrevPrice3

FROM Data

The preceding example counts backwards through
three rows of non-null Price; if there are not that
many, the value of PrevPrice3is 0. If desired, the
keywords RESPECT NULLS may be used for the
default behavior, which is to retain null data before
counting rows backwards from the current row.

LEAD is essentially the same as LAG, except that it
looks forward in the ordered window partition rather
than backwards.

71

8.2.2 NTH_VALUE

LAG and LEAD evaluate an expression in a row
R2 that is located relative to the current row R/. The
NTH VALUE window function is similar, except that it
navigates to a row R2 that is at an offset from either the
first or last row of the window frame of R/. For exam-
ple,

SELECT Price AS CurPrice,
NTH VALUE (Price, 1)
FROM FIRST
IGNORE NULLS
OVER (ORDER BY Tstamp
ROWS BETWEEN 3 PRECEDING
AND 3 FOLLOWING)
AS EarlierPrice
FROM Data

In this example, EarlierPrice is evaluated as

follows:

* Form the window frame of the current row R/.

» Evaluate the expression Price in each row of the
window frame.

* Since IGNORE NULLS is specified, remove any
nulls from the collection of values.

+ Starting at the first remaining value, move forward
(because FROM FIRST is specified) by one row
(because the offset in the second argument is 1)

* The value of EarlierPrice is the value of
Price in the chosen row.

Instead of FROM FIRST, one specifies FROM
LAST in order to offset from the last row of the window
frame. The offset is still a positive integer, though it is
used to offset backwards through the window frame.

Instead of IGNORE NULLS, one can specify
RESPECT NULLS to retain nulls in the set of candidate
rows prior to offsetting.

8.2.3 FIRST_VALUE and LAST_VALUE

The FIRST VALUE and LAST VALUE window
functions are special cases of NTH VALUE, in which
the offset is always 0. FIRST VALUE is equivalent to
NTH VALUE using the FROM FIRST option with an
offset of 0, while LAST VALUE is equivalent to
NTH VALUE using FROM LAST with an option of 0.
Both FIRST VALUE and LAST VALUE support the
choice of IGNORE NULLS or RESPECT NULLS

8.3 Nested navigation in window functions

The window functions LAG, LEAD, NTH_VALUE,
FIRST VALUE and LAST VALUE enable the user to
evaluate an expression at a row R2 at some point rela-
tive to the window frame of the current row R/. How-
ever, these functions cannot be nested within other

72

window functions. Consider, for example, the following
query: how many times in the past 30 trades has the
Price been greater than the current Price? This
query can be answered with a self-join, which users fre-
quently find difficult to write, and then the DBMS finds
difficult to optimize. Instead of using a self-join, it
would be desirable to use a window to survey the past
30 trades. Then the problem reduces to counting the
number of rows in the window frame in which the
Price exceeds the current Price. Using new features
in SQL:2011, the query can be expressed as follows:
SELECT Tstamp,
SUM (CASE WHEN Price >
VALUE_OF (Price AT
CURRENT ROW)
THEN 1 ELSE 0)
OVER (ORDER BY Tstamp
ROWS BETWEEN 30 PRECEDING
AND CURRENT ROW)
FROM Data

In the preceding query, the SUM is a window aggre-
gate over a window that surveys the preceding 30 trades.
The SUM is performed on a collections of 1°s and 0’s, so
it is effectively a count of the number of 1’s that are
summed. There is a 1 for every Price in the window
frame that exceeds the Price at the current row. To
obtain the Price at the current row, the VALUE OF
function, new in SQL:2011, is used. The VALUE OF
function specifies an expression to evaluate and a row of
the window frame at which to perform the evaluation.
In this example, the keyword CURRENT ROW, called a
row marker, indicates the current row. Other row mark-
ers can be used to indicate the beginning or end of the
window partition or the window frame. Additionally, a
row marker may have an integer offset that is added or
subtracted.

8.4 GROUPS option

The window frame of a row R consists of a set of
rows in the same window partition as R, defined by a
starting and an ending position. The starting position
UNBOUNDED PRECEDING is absolute, as is the ending
position UNBOUNDED FOLLOWING. CURRENT ROW
may be used as either a starting or an ending position,
and is simply the position of R. It is also possible to
specify relative starting or ending positions using an
offset from R. For example

SELECT Acctno, TransDate,
SUM (Amount) OVER
(PARTITION BY Acctno
ORDER BY TransDate
ROWS BETWEEN
3 PRECEDING

SIGMOD Record, March 2012 (Vol. 41, No. 1)

AND 3 FOLLOWING)
FROM Accounts

In the preceding example, the window frame is mea-
sures in ROWS and consists of up to 7 rows (3 before R,
R itself and 3 after R). Alternatively, the window frame
might be measured quantitatively, as in this example

SELECT Acctno, TransDate,
SUM (Amount) OVER
(PARTITION BY Acctno
ORDER BY TransDate
RANGE BETWEEN
INTERVAL 'l' MONTH PRECEDING
AND
INTERVAL 'l' MONTH FOLLOWING)
FROM Accounts

The preceding example uses RANGE to specify the
window frame by offsetting the value of the sort column
Transdate plus or minus 1 month from R.

The options ROWS and RANGE have their respective
advantages and disadvantages. RANGE can only be used
with a single sort key, and the sort key must be of a data
type that supports addition and subtraction. ROWS will
work with any number or data types of sort keys, but
results can be non-deterministic since counting by rows
may bisect a contiguous group of rows that are identical
on the sort keys.

SQL:2011 introduced a third option, GROUPS,
which combines some of the features of both ROWS and
RANGE. GROUPS operates by counting groups of rows
that are identical on the sort keys. Thus GROUPS can
work with any number and data types of sort keys, and
still give a deterministic result. For example,

SELECT Acctno, TransDate,
SUM (Amount) OVER
(PARTITION BY Acctno
ORDER BY TransDate
GROUPS BETWEEN
3 PRECEDING
AND 3 FOLLOWING)
FROM Accounts

The window frame of a row R consists of up to 7
groups of rows (3 groups before R, the group of R itself,
and 3 groups after R), where a group is a set of rows that
have identical TransDate.

9. Acknowledgements

The author thanks his colleagues on the ANSI SQL
committee Jim Melton (Oracle), Krishna Kulkarni
(IBM) and Jan-Eike Michels (IBM) for reviewing this
article.

SIGMOD Record, March 2012 (Vol. 41, No. 1)

10. References

[1TISO/IEC 9075-1:2011, Information technology—
Database languages—SQL—Part 1: Framework
(SQL/Framework), 2011

[2] ISO/IEC 9075-2:2011, Information technology—
Database languages—SQL—Part 2: Foundation
(SQL/Foundation), 2011

[3] ISO/IEC 9075-3:2008, Information technology—
Database languages—SQL—Part 3: Call-Level
Interface (SOL/CLI), 2008

[4] ISO/IEC 9075-4:2011, Information technology—
Database languages—SQL—Part 4: Persistent
Stored Modules (SOL/PSM), 2011

[STISO/IEC 9075-9:2008, Information technology—
Database languages—SQL—Part 9: Management
of External Data (SOQL/MED), 2008

[6] ISO/IEC 9075-10:2008, Information technology—
Database languages—SQL—Part 10: Object Lan-
guage Bindings (SOL/OLB), 2008

[7] ISO/IEC 9075-11:2011, Information technology—
Database languages—SQL—Part 11: Information
and Definition Schemas (SQL/Schemata), 2011

[8] ISO/IEC 9075-13:2008, Information technology—
Database languages—SQL—Part 13: SOL Routines
and Types Using the Java™ Programming Lan-
guage (SQL/JRT), 2008

[9] ISO/IEC 9075-14:2011, Information technology—
Database languages—SQL—Part 14: XML-Related
Specifications (SOL/XML), 2011

[10] Andrew Eisenberg and Jim Melton, “SQL:1999,
formerly known as SQL3” SIGMOD Record Vol.
28 No. 1 March 1999, zip available at http://
www.sigmod.org/publications/sigmod-record/9903/
index.html

[11] Andrew Eisenberg, Jim Melton, Krishna Kulkarni,
Jan-Eike Michels, and Fred Zemke, “SQL:2003 has
been published” SIGMOD Record Vol. 33 No. 1
March 2004 pp. 119-126 http://www.sigmod.org/
publications/sigmod-record/0403/E.JimAndrew-
standard.pdf

[12] Andrew Eisenberg and Jim Melton, “Advances in
SQL/XML”, SIGMOD Record Vol. 33 No. 3 Sept.
2004, http://www.sigmod.org/publications/sigmod-
record/0409/11.JimMelton.pdf

73

