如何更好地理解和掌握 KMP 算法?

如何更好地理解和掌握 KMP 算法
关注者
3,076
被浏览
2,219,924

138 个回答

  KMP算法是一种字符串匹配算法,可以在 O(n+m) 的时间复杂度内实现两个字符串的匹配。本文将引导您学习KMP算法,阅读大约需要30分钟。


字符串匹配问题


   所谓字符串匹配,是这样一种问题:“字符串 P 是否为字符串 S 的子串?如果是,它出现在 S 的哪些位置?” 其中 S 称为主串;P 称为模式串。下面的图片展示了一个例子。

  主串是莎翁那句著名的 “to be or not to be”,这里删去了空格。“no” 这个模式串的匹配结果是“出现了一次,从S[6]开始”;“ob”这个模式串的匹配结果是“出现了两次,分别从s[1]、s[10]开始”。按惯例,主串和模式串都以0开始编号。
  字符串匹配是一个非常频繁的任务。例如,今有一份名单,你急切地想知道自己在不在名单上;又如,假设你拿到了一份文献,你希望快速地找到某个关键字(keyword)所在的章节……凡此种种,不胜枚举。
  我们先从最朴素的Brute-Force算法开始讲起。


Brute-Force


  顾名思义,Brute-Force是一个纯暴力算法。说句题外话,我怀疑,“暴力”一词在算法领域表示“穷举、极低效率的实现”,可能就是源于这个英文词。
  首先,我们应该如何实现两个字符串 A,B 的比较?所谓字符串比较,就是问“两个字符串是否相等”。最朴素的思想,就是从前往后逐字符比较,一旦遇到不相同的字符,就返回False;如果两个字符串都结束了,仍然没有出现不对应的字符,则返回True。实现如下:

  既然我们可以知道“两个字符串是否相等”,那么最朴素的字符串匹配算法 Brute-Force 就呼之欲出了——

  • 枚举 i = 0, 1, 2 ... , len(S)-len(P)
  • 将 S[i : i+len(P)] 与 P 作比较。如果一致,则找到了一个匹配。

  现在我们来模拟 Brute-Force 算法,对主串 “AAAAAABC” 和模式串 “AAAB” 做匹配:

  这是一个清晰明了的算法,实现也极其简单。下面给出Python和C++的实现:

  我们成功实现了 Brute-Force 算法。现在,我们需要对它的时间复杂度做一点讨论。按照惯例,记 n = |S| 为串 S 的长度,m = |P| 为串 P 的长度。
  考虑“字符串比较”这个小任务的复杂度。最坏情况发生在:两个字符串唯一的差别在最后一个字符。这种情况下,字符串比较必须走完整个字符串,才能给出结果,因此复杂度是 O(len) 的。  

  由此,不难想到 Brute-Force 算法所面对的最坏情况:主串形如“AAAAAAAAAAA...B”,而模式串形如“AAAAA...B”。每次字符串比较都需要付出 |P| 次字符比较的代价,总共需要比较 |S| - |P| + 1次,因此总时间复杂度是 O(|P|\cdot (|S| - |P| + 1) ) . 考虑到主串一般比模式串长很多,故 Brute-Force 的复杂度是 O(|P| \cdot |S|) ,也就是 O(nm)的。这太慢了!


Brute-Force的改进思路


  经过刚刚的分析,您已经看到,Brute-Force 慢得像爬一样。它最坏的情况如下图所示:

  我们很难降低字符串比较的复杂度(因为比较两个字符串,真的只能逐个比较字符)。因此,我们考虑降低比较的趟数。如果比较的趟数能降到足够低,那么总的复杂度也将会下降很多。  要优化一个算法,首先要回答的问题是“我手上有什么信息?” 我们手上的信息是否足够、是否有效,决定了我们能把算法优化到何种程度。请记住:尽可能利用残余的信息,是KMP算法的思想所在
  在 Brute-Force 中,如果从 S[i] 开始的那一趟比较失败了,算法会直接开始尝试从 S[i+1] 开始比较。这种行为,属于典型的“没有从之前的错误中学到东西”。我们应当注意到,一次失败的匹配,会给我们提供宝贵的信息——如果 S[i : i+len(P)] 与 P 的匹配是在第 r 个位置失败的,那么从 S[i] 开始的 (r-1) 个连续字符,一定与 P 的前 (r-1) 个字符一模一样!

  需要实现的任务是“字符串匹配”,而每一次失败都会给我们换来一些信息——能告诉我们,主串的某一个子串等于模式串的某一个前缀。但是这又有什么用呢?


跳过不可能成功的字符串比较

  有些趟字符串比较是有可能会成功的;有些则毫无可能。我们刚刚提到过,优化 Brute-Force 的路线是“尽量减少比较的趟数”,而如果我们跳过那些绝不可能成功的字符串比较,则可以希望复杂度降低到能接受的范围。
  那么,哪些字符串比较是不可能成功的?来看一个例子。已知信息如下:

  • 模式串 P = "abcabd".
  • 和主串从S[0]开始匹配时,在 P[5] 处失配。


  首先,利用上一节的结论。既然是在 P[5] 失配的,那么说明 S[0:5] 等于 P[0:5],即"abcab". 现在我们来考虑:从 S[1]、S[2]、S[3] 开始的匹配尝试,有没有可能成功?
  从 S[1] 开始肯定没办法成功,因为 S[1] = P[1] = 'b',和 P[0] 并不相等。从 S[2] 开始也是没戏的,因为 S[2] = P[2] = 'c',并不等于P[0]. 但是从 S[3] 开始是有可能成功的——至少按照已知的信息,我们推不出矛盾。

  带着“跳过不可能成功的尝试”的思想,我们来看next数组。


next数组


  next数组是对于模式串而言的。P 的 next 数组定义为:next[i] 表示 P[0] ~ P[i] 这一个子串,使得 前k个字符恰等于后k个字符 的最大的k. 特别地,k不能取i+1(因为这个子串一共才 i+1 个字符,自己肯定与自己相等,就没有意义了)。

  上图给出了一个例子。P="abcabd"时,next[4]=2,这是因为P[0] ~ P[4] 这个子串是"abcab",前两个字符与后两个字符相等,因此next[4]取2. 而next[5]=0,是因为"abcabd"找不到前缀与后缀相同,因此只能取0.

  如果把模式串视为一把标尺,在主串上移动,那么 Brute-Force 就是每次失配之后只右移一位;改进算法则是每次失配之后,移很多位,跳过那些不可能匹配成功的位置。但是该如何确定要移多少位呢?

  在 S[0] 尝试匹配,失配于 S[3] <=> P[3] 之后,我们直接把模式串往右移了两位,让 S[3] 对准 P[1]. 接着继续匹配,失配于 S[8] <=> P[6], 接下来我们把 P 往右平移了三位,把 S[8] 对准 P[3]. 此后继续匹配直到成功。
  我们应该如何移动这把标尺?很明显,如图中蓝色箭头所示,旧的后缀要与新的前缀一致(如果不一致,那就肯定没法匹配上了)!


  回忆next数组的性质:P[0] 到 P[i] 这一段子串中,前next[i]个字符与后next[i]个字符一模一样。既然如此,如果失配在 P[r], 那么P[0]~P[r-1]这一段里面,前next[r-1]个字符恰好和后next[r-1]个字符相等——也就是说,我们可以拿长度为 next[r-1] 的那一段前缀,来顶替当前后缀的位置,让匹配继续下去!
  您可以验证一下上面的匹配例子:P[3]失配后,把P[next[3-1]]也就是P[1]对准了主串刚刚失配的那一位;P[6]失配后,把P[next[6-1]]也就是P[3]对准了主串刚刚失配的那一位。

  如上图所示,绿色部分是成功匹配,失配于红色部分。深绿色手绘线条标出了相等的前缀和后缀,其长度为next[右端]. 由于手绘线条部分的字符是一样的,所以直接把前面那条移到后面那条的位置。因此说,next数组为我们如何移动标尺提供了依据。接下来,我们实现这个优化的算法。


利用next数组进行匹配


  了解了利用next数组加速字符串匹配的原理,我们接下来代码实现之。分为两个部分:建立next数组、利用next数组进行匹配。
  首先是建立next数组。我们暂且用最朴素的做法,以后再回来优化:

  如上图代码所示,直接根据next数组的定义来建立next数组。不难发现它的复杂度是 O(m^2) 的。
  接下来,实现利用next数组加速字符串匹配。代码如下:

  如何分析这个字符串匹配的复杂度呢?乍一看,pos值可能不停地变成next[pos-1],代价会很高;但我们使用摊还分析,显然pos值一共顶多自增len(S)次,因此pos值减少的次数不会高于len(S)次。由此,复杂度是可以接受的,不难分析出整个匹配算法的时间复杂度:O(n+m).


快速求next数组


  终于来到了我们最后一个问题——如何快速构建next数组。
  首先说一句:快速构建next数组,是KMP算法的精髓所在,核心思想是“P自己与自己做匹配”。
  为什么这样说呢?回顾next数组的完整定义:

  • 定义 “k-前缀” 为一个字符串的前 k 个字符; “k-后缀” 为一个字符串的后 k 个字符。k 必须小于字符串长度。
  • next[x] 定义为: P[0]~P[x] 这一段字符串,使得k-前缀恰等于k-后缀的最大的k.

  这个定义中,不知不觉地就包含了一个匹配——前缀和后缀相等。接下来,我们考虑采用递推的方式求出next数组。如果next[0], next[1], ... next[x-1]均已知,那么如何求出 next[x] 呢?

  来分情况讨论。首先,已经知道了 next[x-1](以下记为now),如果 P[x] 与 P[now] 一样,那最长相等前后缀的长度就可以扩展一位,很明显 next[x] = now + 1. 图示如下。


  刚刚解决了 P[x] = P[now] 的情况。那如果 P[x] 与 P[now] 不一样,又该怎么办?

  如图。长度为 now 的子串 A 和子串 B 是 P[0]~P[x-1] 中最长的公共前后缀。可惜 A 右边的字符和 B 右边的那个字符不相等,next[x]不能改成 now+1 了。因此,我们应该缩短这个now,把它改成小一点的值,再来试试 P[x] 是否等于 P[now].
  now该缩小到多少呢?显然,我们不想让now缩小太多。因此我们决定,在保持“P[0]~P[x-1]的now-前缀仍然等于now-后缀”的前提下,让这个新的now尽可能大一点。 P[0]~P[x-1] 的公共前后缀,前缀一定落在串A里面、后缀一定落在串B里面。换句话讲:接下来now应该改成:使得 A的k-前缀等于B的k-后缀 的最大的k.
  您应该已经注意到了一个非常强的性质——串A和串B是相同的!B的后缀等于A的后缀!因此,使得A的k-前缀等于B的k-后缀的最大的k,其实就是串A的最长公共前后缀的长度 —— next[now-1]!

  来看上面的例子。当P[now]与P[x]不相等的时候,我们需要缩小now——把now变成next[now-1],直到P[now]=P[x]为止。P[now]=P[x]时,就可以直接向右扩展了。

  代码实现如下:

  应用摊还分析,不难证明构建next数组的时间复杂度是O(m)的。至此,我们以O(n+m)的时间复杂度,实现了构建next数组、利用next数组进行字符串匹配。

  以上就是KMP算法。它于1977年被提出,全称 Knuth–Morris–Pratt 算法。让我们记住前辈们的名字:Donald Knuth(K), James H. Morris(M), Vaughan Pratt(P).
  希望本文对你有帮助。 本文在我博客的url是 ruanx.pw/kmp/ , 以后可能会更新。



  最后附上洛谷P3375 【模板】KMP字符串匹配 的Python和Java版代码:

有些算法,适合从它产生的动机,如何设计与解决问题这样正向地去介绍。但KMP算法真的不适合这样去学。最好的办法是先搞清楚它所用的数据结构是什么,再搞清楚怎么用,最后为什么的问题就会有恍然大悟的感觉。我试着从这个思路再介绍一下。大家只需要记住一点,PMT是什么东西。然后自己临时推这个算法也是能推出来的,完全不需要死记硬背。

KMP算法的核心,是一个被称为部分匹配表(Partial Match Table)的数组。我觉得理解KMP的最大障碍就是很多人在看了很多关于KMP的文章之后,仍然搞不懂PMT中的值代表了什么意思。这里我们抛开所有的枝枝蔓蔓,先来解释一下这个数据到底是什么。

对于字符串“abababca”,它的PMT如下表所示:

就像例子中所示的,如果待匹配的模式字符串有8个字符,那么PMT就会有8个值。

我先解释一下字符串的前缀和后缀。如果字符串A和B,存在A=BS,其中S是任意的非空字符串,那就称B为A的前缀。例如,”Harry”的前缀包括{”H”, ”Ha”, ”Har”, ”Harr”},我们把所有前缀组成的集合,称为字符串的前缀集合。同样可以定义后缀A=SB, 其中S是任意的非空字符串,那就称B为A的后缀,例如,”Potter”的后缀包括{”otter”, ”tter”, ”ter”, ”er”, ”r”},然后把所有后缀组成的集合,称为字符串的后缀集合。要注意的是,字符串本身并不是自己的后缀。

有了这个定义,就可以说明PMT中的值的意义了。PMT中的值是字符串的前缀集合与后缀集合的交集中最长元素的长度。例如,对于”aba”,它的前缀集合为{”a”, ”ab”},后缀 集合为{”ba”, ”a”}。两个集合的交集为{”a”},那么长度最长的元素就是字符串”a”了,长 度为1,所以对于”aba”而言,它在PMT表中对应的值就是1。再比如,对于字符串”ababa”,它的前缀集合为{”a”, ”ab”, ”aba”, ”abab”},它的后缀集合为{”baba”, ”aba”, ”ba”, ”a”}, 两个集合的交集为{”a”, ”aba”},其中最长的元素为”aba”,长度为3。

好了,解释清楚这个表是什么之后,我们再来看如何使用这个表来加速字符串的查找,以及这样用的道理是什么。如图 1.12 所示,要在主字符串"ababababca"中查找模式字符串"abababca"。如果在 j 处字符不匹配,那么由于前边所说的模式字符串 PMT 的性质,主字符串中 i 指针之前的 PMT[j −1] 位就一定与模式字符串的第 0 位至第 PMT[j−1] 位是相同的。这是因为主字符串在 i 位失配,也就意味着主字符串从 i−j 到 i 这一段是与模式字符串的 0 到 j 这一段是完全相同的。而我们上面也解释了,模式字符串从 0 到 j−1 ,在这个例子中就是”ababab”,其前缀集合与后缀集合的交集的最长元素为”abab”, 长度为4。所以就可以断言,主字符串中i指针之前的 4 位一定与模式字符串的第0位至第 4 位是相同的,即长度为 4 的后缀与前缀相同。这样一来,我们就可以将这些字符段的比较省略掉。具体的做法是,保持i指针不动,然后将j指针指向模式字符串的PMT[j −1]位即可。

简言之,以图中的例子来说,在 i 处失配,那么主字符串和模式字符串的前边6位就是相同的。又因为模式字符串的前6位,它的前4位前缀和后4位后缀是相同的,所以我们推知主字符串i之前的4位和模式字符串开头的4位是相同的。就是图中的灰色部分。那这部分就不用再比较了。

有了上面的思路,我们就可以使用PMT加速字符串的查找了。我们看到如果是在 j 位 失配,那么影响 j 指针回溯的位置的其实是第 j −1 位的 PMT 值,所以为了编程的方便, 我们不直接使用PMT数组,而是将PMT数组向后偏移一位。我们把新得到的这个数组称为next数组。下面给出根据next数组进行字符串匹配加速的字符串匹配程序。其中要注意的一个技巧是,在把PMT进行向右偏移时,第0位的值,我们将其设成了-1,这只是为了编程的方便,并没有其他的意义。在本节的例子中,next数组如下表所示。

具体的程序如下所示:

int KMP(char * t, char * p) 
{
	int i = 0; 
	int j = 0;

	while (i < (int)strlen(t) && j < (int)strlen(p))
	{
		if (j == -1 || t[i] == p[j]) 
		{
			i++;
           		j++;
		}
	 	else 
           		j = next[j];
    	}

    if (j == strlen(p))
       return i - j;
    else 
       return -1;
}

好了,讲到这里,其实KMP算法的主体就已经讲解完了。你会发现,其实KMP算法的动机是很简单的,解决的方案也很简单。远没有很多教材和算法书里所讲的那么乱七八糟,只要搞明白了PMT的意义,其实整个算法都迎刃而解。

现在,我们再看一下如何编程快速求得next数组。其实,求next数组的过程完全可以看成字符串匹配的过程,即以模式字符串为主字符串,以模式字符串的前缀为目标字符串,一旦字符串匹配成功,那么当前的next值就是匹配成功的字符串的长度。

具体来说,就是从模式字符串的第一位(注意,不包括第0位)开始对自身进行匹配运算。 在任一位置,能匹配的最长长度就是当前位置的next值。如下图所示。

求next数组值的程序如下所示:

void getNext(char * p, int * next)
{
	next[0] = -1;
	int i = 0, j = -1;

	while (i < (int)strlen(p))
	{
		if (j == -1 || p[i] == p[j])
		{
			++i;
			++j;
			next[i] = j;
		}	
		else
			j = next[j];
	}
}

至此,KMP算法就全部介绍完了。

=====================

在基础软件领域转了一圈,被人鼓动着能不能把最核心的知识总结下来。于是就上线了这个专栏:

如果你喜欢底层软件开发,想研究底层知识,可以关注一下。