首发于从零学AI
一文详解:什么是B树?

一文详解:什么是B树?

8本电子书免费送给大家,见文末。

1.前言

动态查找树主要有:二叉查找树(Binary Search Tree),平衡二叉查找树(Balanced Binary Search Tree),红黑树(Red-Black Tree ),B-tree/B+-tree/ B*-tree (B~Tree)。前三者是典型的二叉查找树结构,其查找的时间复杂度O(log2N)与树的深度相关,那么降低树的深度自然会提高查找效率。

但是咱们有面对这样一个实际问题:就是大规模数据存储中,实现索引查询这样一个实际背景下,树节点存储的元素数量是有限的(如果元素数量非常多的话,查找就退化成节点内部的线性查找了),这样导致二叉查找树结构由于树的深度过大而造成磁盘I/O读写过于频繁,进而导致查询效率低下(为什么会出现这种情况,待会在外部存储器-磁盘中有所解释),那么如何减少树的深度(当然是不能减少查询的数据量),一个基本的想法就是:采用多叉树结构(由于树节点元素数量是有限的,自然该节点的子树数量也就是有限的)。

也就是说,因为磁盘的操作费时费资源,如果过于频繁的多次查找势必效率低下。那么如何提高效率,即如何避免磁盘过于频繁的多次查找呢?根据磁盘查找存取的次数往往由树的高度所决定,所以,只要我们通过某种较好的树结构减少树的结构尽量减少树的高度,那么是不是便能有效减少磁盘查找存取的次数呢?那这种有效的树结构是一种怎样的树呢?

这样我们就提出了一个新的查找树结构——多路查找树。根据平衡二叉树的启发,自然就想到平衡多路查找树结构,也就是这篇文章所要阐述的第一个主题B~tree,即B树结构(后面,我们将看到,B树的各种操作能使B树保持较低的高度,从而达到有效避免磁盘过于频繁的查找存取操作,从而有效提高查找效率)。

B-tree(B-tree树即B树,B即Balanced,平衡的意思)这棵神奇的树是在Rudolf Bayer, Edward M. McCreight(1970)写的一篇论文《Organization and Maintenance of Large Ordered Indices》中首次提出的(wikipedia中:en.wikipedia.org/wiki/B,阐述了B-tree名字来源以及相关的开源地址)。

在开始介绍B~tree之前,先了解下相关的硬件知识,才能很好的了解为什么需要B~tree这种外存数据结构。

新课【2021大厂最新AI面试题】限时1分钱秒杀,主要更新大厂最新面试题,AI干货资料,会持续无限期更新,也就是1分钱购买此课终生享有此课的使用权,目前干货组汇总了今年3月-6月份,大厂面试题。

已开抢>>>

2.外存储器—磁盘 2022年q3最新大厂AI面试题 [含答案和解析] - 七月在线2.外存储器—磁盘

计算机存储设备一般分为两种:内存储器(main memory)和外存储器(external memory)。 内存存取速度快,但容量小,价格昂贵,而且不能长期保存数据(在不通电情况下数据会消失)。

外存储器—磁盘是一种直接存取的存储设备(DASD)。它是以存取时间变化不大为特征的。可以直接存取任何字符组,且容量大、速度较其它外存设备更快。

2.1 磁盘的构造

磁盘是一个扁平的圆盘(与电唱机的唱片类似)。盘面上有许多称为磁道的圆圈,数据就记录在这些磁道上。磁盘可以是单片的,也可以是由若干盘片组成的盘组,每一盘片上有两个面。如下图11.3中所示的6片盘组为例,除去最顶端和最底端的外侧面不存储数据之外,一共有10个面可以用来保存信息。



当磁盘驱动器执行读/写功能时。盘片装在一个主轴上,并绕主轴高速旋转,当磁道在读/写头(又叫磁头) 下通过时,就可以进行数据的读 / 写了。

一般磁盘分为固定头盘(磁头固定)和活动头盘。固定头盘的每一个磁道上都有独立的磁头,它是固定不动的,专门负责这一磁道上数据的读/写。

活动头盘 (如上图)的磁头是可移动的。每一个盘面上只有一个磁头(磁头是双向的,因此正反盘面都能读写)。它可以从该面的一个磁道移动到另一个磁道。所有磁头都装在同一个动臂上,因此不同盘面上的所有磁头都是同时移动的(行动整齐划一)。当盘片绕主轴旋转的时候,磁头与旋转的盘片形成一个圆柱体。各个盘面上半径相同的磁道组成了一个圆柱面,我们称为柱面 。因此,柱面的个数也就是盘面上的磁道数。

2.2磁盘的读/写原理和效率

磁盘上数据必须用一个三维地址唯一标示:柱面号、盘面号、块号(磁道上的盘块)。

读/写磁盘上某一指定数据需要下面3个步骤:

(1) 首先移动臂根据柱面号使磁头移动到所需要的柱面上,这一过程被称为定位或查找 。

(2) 如上图11.3中所示的6盘组示意图中,所有磁头都定位到了10个盘面的10条磁道上(磁头都是双向的)。这时根据盘面号来确定指定盘面上的磁道。

(3) 盘面确定以后,盘片开始旋转,将指定块号的磁道段移动至磁头下。

经过上面三个步骤,指定数据的存储位置就被找到。这时就可以开始读/写操作了。

访问某一具体信息,由3部分时间组成:

● 查找时间(seek time) Ts: 完成上述步骤(1)所需要的时间。这部分时间代价最高,最大可达到0.1s左右。

● 等待时间(latency time) Tl: 完成上述步骤(3)所需要的时间。由于盘片绕主轴旋转速度很快,一般为7200转/分(电脑硬盘的性能指标之一, 家用的普通硬盘的转速一般有5400rpm(笔记本)、7200rpm几种)。因此一般旋转一圈大约0.0083s。

● 传输时间(transmission time) Tt: 数据通过系统总线传送到内存的时间,一般传输一个字节(byte)大概0.02us=2*10^(-8)s

磁盘读取数据是以盘块(block)为基本单位的。位于同一盘块中的所有数据都能被一次性全部读取出来。而磁盘IO代价主要花费在查找时间Ts上。因此我们应该尽量将相关信息存放在同一盘块,同一磁道中。或者至少放在同一柱面或相邻柱面上,以求在读/写信息时尽量减少磁头来回移动的次数,避免过多的查找时间Ts。

所以,在大规模数据存储方面,大量数据存储在外存磁盘中,而在外存磁盘中读取/写入块(block)中某数据时,首先需要定位到磁盘中的某块,如何有效地查找磁盘中的数据,需要一种合理高效的外存数据结构,就是下面所要重点阐述的B-tree结构,以及相关的变种结构:B+-tree结构和B*-tree结构。


3.B树

3.1 什么是B树

具体讲解之前,有一点,再次强调下:有的文章里面出现的B-树,即为B树。因为B树的原英文名称为B-tree,而国内很多人喜欢把B-tree译作B-树,其实,这是个非常不好的直译,很容易让人产生误解。如人们可能会以为B-树是一种树,而B树又是一种一种树。而事实上是,B-tree就是指的B树。特此说明。

我们知道,B树是为了磁盘或其它存储设备而设计的一种多叉(下面你会看到,相对于二叉,B树每个内结点有多个分支,即多叉)平衡查找树。与本blog之前介绍的红黑树很相似,但在降低磁盘I/0操作方面要更好一些。许多数据库系统都一般使用B树或者B树的各种变形结构,如下文即将要介绍的B+树,B*树来存储信息。

B树与红黑树最大的不同在于,B树的结点可以有许多子女,从几个到几千个。那为什么又说B树与红黑树很相似呢?因为与红黑树一样,一棵含n个结点的B树的高度也为O(lgn),但可能比一棵红黑树的高度小许多,应为它的分支因子比较大。所以,B树可以在O(logn)时间内,实现各种如插入(insert),删除(delete)等动态集合操作。

如下图所示,即是一棵B树,一棵关键字为英语中辅音字母的B树,现在要从树种查找字母R(包含n[x]个关键字的内结点x,x有n[x]+1]个子女(也就是说,一个内结点x若含有n[x]个关键字,那么x将含有n[x]+1个子女)。所有的叶结点都处于相同的深度,带阴影的结点为查找字母R时要检查的结点):



相信,从上图你能轻易的看到,一个内结点x若含有n[x]个关键字,那么x将含有n[x]+1个子女。如含有2个关键字D H的内结点有3个子女,而含有3个关键字Q T X的内结点有4个子女。

B树的定义,从下文中,你将看到,或者是用阶,或者是用度,如下段文字所述:

Unfortunately, the literature on B-trees is not uniform in its use of terms relating to B-Trees. (Folk & Zoellick 1992, p. 362) Bayer & McCreight (1972), Comer (1979), and others define the order of B-tree as the minimum number of keys in a non-root node. Folk & Zoellick (1992) points out that terminology is ambiguous because the maximum number of keys is not clear. An order 3 B-tree might hold a maximum of 6 keys or a maximum of 7 keys. (Knuth 1998,TAOCP p. 483) avoids the problem by defining the order to be maximum number of children (which is one more than the maximum number of keys).


用阶定义的B树

B 树又叫平衡多路查找树。一棵m阶的B 树 (注:切勿简单的认为一棵m阶的B树是m叉树,虽然存在四叉树,八叉树,KD树,及vp/R树/R*树/R+树/X树/M树/线段树/希尔伯特R树/优先R树等空间划分树,但与B树完全不等同)的特性如下:

①树中每个结点最多含有m个孩子(m>=2);

②除根结点和叶子结点外,其它每个结点至少有[ceil(m / 2)]个孩子(其中ceil(x)是一个取上限的函数);

③若根结点不是叶子结点,则至少有2个孩子(特殊情况:没有孩子的根结点,即根结点为叶子结点,整棵树只有一个根节点);

④所有叶子结点都出现在同一层,叶子结点不包含任何关键字信息(可以看做是外部接点或查询失败的接点,实际上这些结点不存在,指向这些结点的指针都为null);(读者反馈@冷岳:这里有错,叶子节点只是没有孩子和指向孩子的指针,这些节点也存在,也有元素。@研究者July:其实,关键是把什么当做叶子结点,因为如红黑树中,每一个NULL指针即当做叶子结点,只是没画出来而已)。

⑤每个非终端结点中包含有n个关键字信息: (n,P0,K1,P1,K2,P2,......,Kn,Pn)。其中:

a)Ki (i=1...n)为关键字,且关键字按顺序升序排序K(i-1)< Ki。 b)Pi为指向子树根的接点,且指针P(i-1)指向子树种所有结点的关键字均小于Ki,但都大于K(i-1)。

c)关键字的个数n必须满足: [ceil(m / 2)-1]<= n <= m-1。如下图所示:


用度定义的B树

针对上面的5点,再阐述下:

B树中每一个结点能包含的关键字(如之前上面的D H和Q T X)数有一个上界和下界。这个下界可以用一个称作B树的最小度数(算法导论中文版上译作度数,最小度数即内节点中节点最小孩子数目)m(m>=2)表示。

i)每个非根的内结点至少有m个子女,每个非根的结点必须至少含有m-1个关键字,如果树是非空的,则根结点至少包含一个关键字;

ii)每个结点可包含至多2m-1个关键字。所以一个内结点至多可有2m个子女。如果一个结点恰好有2m-1个关键字,我们就说这个结点是满的(而稍后介绍的B*树作为B树的一种常用变形,B*树中要求每个内结点至少为2/3满,而不是像这里的B树所要求的至少半满);

iii)当关键字数m=2(t=2的意思是,mmin=2,m可以>=2)时的B树是最简单的(有很多人会因此误认为B树就是二叉查找树,但二叉查找树就是二叉查找树,B树就是B树,B树是一棵含有m(m>=2)个关键字的平衡多路查找树),此时,每个内结点可能因此而含有2个、3个或4个子女,亦即一棵2-3-4树,然而在实际中,通常采用大得多的t值。

B树中的每个结点根据实际情况可以包含大量的关键字信息和分支(当然是不能超过磁盘块的大小,根据磁盘驱动(disk drives)的不同,一般块的大小在1k~4k左右);这样树的深度降低了,这就意味着查找一个元素只要很少结点从外存磁盘中读入内存,很快访问到要查找的数据。如果你看完上面关于B树定义的介绍,思维感觉不够清晰,请继续参阅下文第6小节、B树的插入、删除操作 部分。


3.2 B树的类型和节点定义

B树的类型和节点定义如下图所示:


3.3 文件查找的具体过程(涉及磁盘IO操作)

为了简单,这里用少量数据构造一棵3叉树的形式,实际应用中的B树结点中关键字很多的。上面的图中比如根结点,其中17表示一个磁盘文件的文件名;小红方块表示这个17文件内容在硬盘中的存储位置;p1表示指向17左子树的指针。

其结构可以简单定义为:

typedef struct {

/*文件数*/

int file_num;

/*文件名(key)*/

char * file_name[max_file_num];


/*指向子节点的指针*/

BTNode * BTptr[max_file_num+1];


/*文件在硬盘中的存储位置*/

FILE_HARD_ADDR offset[max_file_num];

}BTNode;


假如每个盘块可以正好存放一个B树的结点(正好存放2个文件名)。那么一个BTNODE结点就代表一个盘块,而子树指针就是存放另外一个盘块的地址。

下面,咱们来模拟下查找文件29的过程:

1 根据根结点指针找到文件目录的根磁盘块1,将其中的信息导入内存。【磁盘IO操作 1次】

2 此时内存中有两个文件名17、35和三个存储其他磁盘页面地址的数据。根据算法我们发现:17<29<35,因此我们找到指针p2。

3 根据p2指针,我们定位到磁盘块3,并将其中的信息导入内存。【磁盘IO操作 2次】

此时内存中有两个文件名26,30和三个存储其他磁盘页面地址的数据。根据算法我们发现:26<29<30,因此我们找到指针p2。

4 根据p2指针,我们定位到磁盘块8,并将其中的信息导入内存。【磁盘IO操作 3次】

此时内存中有两个文件名28,29。根据算法我们查找到文件名29,并定位了该文件内存的磁盘地址。

分析上面的过程,发现需要3次磁盘IO操作和3次内存查找操作。关于内存中的文件名查找,由于是一个有序表结构,可以利用折半查找提高效率。至于IO操作是影响整个B树查找效率的决定因素。

当然,如果我们使用平衡二叉树的磁盘存储结构来进行查找,磁盘4次,最多5次,而且文件越多,B树比平衡二叉树所用的磁盘IO操作次数将越少,效率也越高。

3.4 B树的高度

根据上面的例子我们可以看出,对于辅存做IO读的次数取决于B树的高度。而B树的高度由什么决定的呢?

若B树某一非叶子节点包含N个关键字,则此非叶子节点含有N+1个孩子结点,而所有的叶子结点都在第I层,我们可以得出:

因为根至少有两个孩子,因此第2层至少有两个结点。

除根和叶子外,其它结点至少有┌m/2┐个孩子,

因此在第3层至少有2*┌m/2┐个结点,

在第4层至少有2*(┌m/2┐^2)个结点,

在第 I 层至少有2*(┌m/2┐^(l-2) )个结点,于是有: N+1 ≥ 2*┌m/2┐I-2;

考虑第L层的结点个数为N+1,那么2*(┌m/2┐^(l-2))≤N+1,也就是L层的最少结点数刚好达到N+1个,即: I≤ log┌m/2┐((N+1)/2 )+2;

所以,当B树包含N个关键字时,B树的最大高度为l-1(因为计算B树高度时,叶结点所在层不计算在内),即:l - 1 = log┌m/2┐((N+1)/2 )+1。   

这个B树的高度公式从侧面显示了B树的查找效率是相当高的。

曾在一次面试中被问到,一棵含有N个总关键字数的m阶的B树的最大高度是多少?答曰:log_ceil(m/2)(N+1)/2 + 1 (上面中关于m阶B树的第1点特性已经提到:树中每个结点含有最多含有m个孩子,即m满足:ceil(m/2)<=m<=m。而树中每个结点含孩子数越少,树的高度则越大,故如此)。在2012微软4月份的笔试中也问到了此问题。

此外,还有读者反馈,说上面的B树的高度计算公式与算法导论一书上的不同,而后我特意翻看了算法导论第18章关于B树的高度一节的内容,如下图所示:


在上图中书上所举的例子中,也许,根据我们大多数人的理解,它的高度应该是4,而书上却说的是“一棵高度为3的B树”。

我想,此时,你也就明白了,算法导论一书上的高度的定义是从“0”开始计数的,而我们中国人的习惯是树的高度是从“1”开始计数的。

本题解析节选自CSDN上的一篇阅读量超过50万的博客《从B 树、B+ 树、B* 树谈到R 树》 作者:July、weedge、Frankie。编程艺术室出品。

↓ ↓ ↓以下8本书电子版免费领,直接送 ,想要哪本评论区说声,我小窗给你↓ ↓ ↓

22年Q3最新大厂面试题电子书,部分截图如下:

编辑于 2022-10-21 15:36