一个简单例子说明为什么C语言仍很重要

本贴最后更新于 4221 天前,其中的信息可能已经事过景迁

翻译自 Anthony J Bonkoski


最近,我一直在开发Dynvm——一个通用的动态语言运行时。就像其他任何好的语言运行时项目一样,开发是由基准测试程序驱动的。因此,我一直在用基准测试程序测试各种由不同语言编写的算法,以此对其典型的运行速度有一个感觉上的认识。一个经典的测试就是迭代计算斐波那契数列。为简单起见,我以2^64为模,用两种语言编写实现了该算法。

用Python语言实现如下:

def fib(n):
    SZ = 2**64
    i = 0
    a, b = 1, 0
    while i < n:
        t = b
        b = (b+a) % SZ
        a = t
        i = i + 1
    return b

用C语言实现如下:

 

#include <stdio.h>
#include <stdlib.h>
typedef unsigned long ulong;

int main(int argc, char *argv[])
{
ulong n = atoi(argv[1]);
ulong a = 1;
ulong b = 0;
ulong t;

for(ulong i = 0; i &lt; n; i++) { t = b; b = a+b; a = t; } printf(&quot;%lu\n&quot;, b); return 0;

}

 

Dynvm包含一个基准测试程序框架,该框架可以允许在不同语言之间对比运行速度。在一台Intel i7-3840QM(调频到1.2 GHz)机器上,当 n=1,000,000 时,对比结果如下:

 

=======================================================
  语言                               时间 (秒)
=======================================================
  Java                               0.133
  C Language                         0.006
  CPython                            0.534
  Javascript V8                      0.284

 

很明显,C语言是这里的老大,但是java的结果有点误导性,因为大部分的时间是由JIT编译器启动(~120ms)占用的。当n=100,000,000时,结果变得更明朗:

 

=======================================================
  语言                              时间(秒)
=======================================================
  Java                               0.300
  C Language                         0.172
  CPython                            47.909
  Javascript V8                      24.179

 

在这里,我们探究下为什么C语言在2013年仍然很重要,以及为什么编程世界不会完全“跳槽”到Python或者V8/Node。有时你需要原始性能,但是动态语言仍在这方面艰难挣扎着,即使对以上很简单的例子而言。我个人相信这种情况会克服掉,通过几个项目我们能在这方面看到很大的希望:JVM、V8、PyPy、LuaJIT等等,但在2013年我们还没有到达“目的地”。

然而,我们无法回避这样的问题:为什么差距如此之大?在C语言和Python之间有278.5倍的性能差距!最不可思议的地方是,从语法角度讲,以上例子中的C语言和Python内部循环基本上一模一样。

为了找到问题的答案,我搬出了反汇编器,发现了以下现象:

0000000000400480 <main>:
247   400480:       48 83 ec 08             sub    $0x8,%rsp
248   400484:       48 8b 7e 08             mov    0x8(%rsi),%rdi
249   400488:       ba 0a 00 00 00          mov    $0xa,%edx
250   40048d:       31 f6                   xor    %esi,%esi
251   40048f:       e8 cc ff ff ff          callq  400460 <strtol@plt>
252   400494:       48 98                   cltq
253   400496:       31 d2                   xor    %edx,%edx
254   400498:       48 85 c0                test   %rax,%rax
255   40049b:       74 26                   je     4004c3 <main+0x43>
256   40049d:       31 c9                   xor    %ecx,%ecx
257   40049f:       31 f6                   xor    %esi,%esi
258   4004a1:       bf 01 00 00 00          mov    $0x1,%edi
259   4004a6:       eb 0e                   jmp    4004b6 <main+0x36>
260   4004a8:       0f 1f 84 00 00 00 00    nopl   0x0(%rax,%rax,1)
261   4004af:       00
262   4004b0:       48 89 f7                mov    %rsi,%rdi
263   4004b3:       48 89 d6                mov    %rdx,%rsi
264   4004b6:       48 83 c1 01             add    $0x1,%rcx
265   4004ba:       48 8d 14 3e             lea    (%rsi,%rdi,1),%rdx
266   4004be:       48 39 c8                cmp    %rcx,%rax
267   4004c1:       77 ed                   ja     4004b0 <main+0x30>
268   4004c3:       be ac 06 40 00          mov    $0x4006ac,%esi
269   4004c8:       bf 01 00 00 00          mov    $0x1,%edi
270   4004cd:       31 c0                   xor    %eax,%eax
271   4004cf:       e8 9c ff ff ff          callq  400470 <__printf_chk@plt>
272   4004d4:       31 c0                   xor    %eax,%eax
273   4004d6:       48 83 c4 08             add    $0x8,%rsp
274   4004da:       c3                      retq
275   4004db:       90                      nop

 

 最主要的部分是计算下一个斐波那契数值的内部循环:

262   4004b0:       48 89 f7                mov    %rsi,%rdi
263   4004b3:       48 89 d6                mov    %rdx,%rsi
264   4004b6:       48 83 c1 01             add    $0x1,%rcx
265   4004ba:       48 8d 14 3e             lea    (%rsi,%rdi,1),%rdx
266   4004be:       48 39 c8                cmp    %rcx,%rax
267   4004c1:       77 ed                   ja     4004b0 <main+0x30>

变量在寄存器中的分配情况如下:

a:  %rsi
b:  %rdx
t:  %rdi
i:  %rcx
n:  %rax

 

262和263行实现了变量交换,264行增加循环计数值,虽然看起来比较奇怪,265行实现了b=a+t。然后做一个简单地比较,最后一个跳转指令跳到循环开始出继续执行。

手动反编译以上代码,代码看起来是这样的:

loop:   t = a
        a = b
        i = i+1
        b = a+t
        if(n > i) goto loop

整个内部循环仅用六条X86-64汇编指令就实现了(很可能内部微指令个数也差不多。译者注:Intel X86-64处理器会把指令进一步翻译成微指令,所以CPU执行的实际指令数要比汇编指令多)。CPython解释模块对每一条高层的指令字节码至少需要六条甚至更多的指令来解释,相比而言,C语言完胜。除此之外,还有一些其他更微妙的地方。

拉低现代处理器执行速度的一个主要原因是对于主存的访问。这个方面的影响十分可怕,在微处理器设计时,无数个工程时(engineering hours)都花费在找到有效地技术来“掩藏”访存延时。通用的策略包括:缓存、推测预取、load-store依赖性预测、乱序执行等等。这些方法确实在使机器更快方面起了很大作用,但是不可能完全不产生访存操作。

在上面的汇编代码中,从没访问过内存,实际上变量完全存储在CPU寄存器中。现在考虑CPython:所有东西都是堆上的对象,而且所有方法都是动态的。动态特性太普遍了,以至于我们没有办法知道,a+b执行integer_add(a, b)、string_concat(a, b)、还是用户自己定义的函数。这也就意味着很多时间花在了在运行时找出到底调用了哪个函数。动态JIT运行时会尝试在运行时获取这个信息,并动态产生x86代码,但是这并不总是非常直接的(我期待V8运行时会表现的更好,但奇怪的是它的速度只是Python的0.5倍)。因为CPython是一个纯粹的翻译器,在每个循环迭代时,很多时间花在了解决动态特性上,这就需要很多不必要的访存操作。

除了以上内存在搞鬼,还有其他因素。现代超标量乱序处理器核一次性可以取好几条指令到处理器中,并且“在最方便时”执行这些指令,也就是说:鉴于结果仍然是正确的,指令执行顺序可以任意。这些处理器也可以在同一个时钟周期并行执行多条指令,只要这些指令是不相关的。Intel Sandy Bridge CPU可以同时将168条指令重排序,并可以在一个周期中发射(即开始执行指令)至多6条指令,同时结束(即指令完成执行)至多4条指令!粗略地以上面斐波那契举例,Intel这个处理器可以大约把28(译者注:28*6=168)个内部循环重排序,并且几乎可以在每一个时钟周期完成一个循环!这听起来很霸气,但是像其他事一样,细节总是非常复杂的。

我们假定8条指令是不相关的,这样处理器就可以取得足够的指令来利用指令重排序带来的好处。对于包含分支指令的指令流进行重排序是非常复杂的,也就是对if-else和循环(译者注:if-else需要判断后跳转,所以必然包含分支指令)产生的汇编代码。典型的方法就是对于分支指令进行预测。CPU会动态的利用以前分支执行结果来猜测将来要执行的分支指令的执行结果,并且取得那些它“认为”将要执行的指令。然而,这个推测有可能是不正确的,如果确实不正确,CPU就会进入复位模式(译者注:这里的复位不是指处理器reset,而是CPU流水线的复位),即丢弃已经取得的指令并且重新开始取指。这种复位操作有可能对性能产生很大影响。因此,对于分支指令的正确预测是另一个需要花费很多工程时的领域。

现在,不是所有分支指令都是一样的,有些可以很完美的预测,但是另一些几乎不可能进行预测。前面例子中的循环中的分支指令——就像反汇编代码中267行——是最容易预测的其中一种,这个分支指令会连续向后跳转100,000,000次。

以下是一个非常难预测的分支指令实例:

void main(void)
{
    for(int i = 0; i < 1000000; i++) {
         int n = random();
         if(n >= 0) {
            printf("positive!\n");
        } else {
            printf("negative!\n");
        }
    }
}

如果random()是真正随机的(事实上在C语言中远非如此),那么对于if-else的预测还不如随便猜来的准确。幸运的是,大部分的分支指令没有这么顽皮,但是也有很少一部分和上面例子中的循环分支指令一样变态。

回到我们的例子上:C代码实现的斐波那契数列,只产生一个非常容易预测的分支指令。相反地,CPython代码就非常糟糕。首先,所有纯粹的翻译器有一个“分配”循环,就像下面的例子:

void exec_instruction(instruction_t *inst)
{
    switch(inst->opcode) {
        case ADD:    // do add
        case LOAD:   // do load
        case STORE:  // do store
        case GOTO:   // do goto
    }
}

编译器无论如何处理以上代码,至少有一个间接跳转指令是必须的,而这种间接跳转指令是比较难预测的。

接下来回忆一下,动态语言必须在运行时确定如“ADD指令的意思是什么”这样基本的问题,这当然会产生——你猜对了——更加变态的分支指令。

以上所有因素加起来,最后导致一个278.5倍的性能差距!现在,这当然是一个很简单的例子,但是其他的只会比这更变态。这个简单例子足以凸显低级静态语言(例如C语言)在现代软件中的重要地位。我当然不是2013年里C语言最大的粉丝,但是C语言仍然主导着低级控制领域及对性能要求高的应用程序领域。

 

  • C

    C 语言是一门通用计算机编程语言,应用广泛。C 语言的设计目标是提供一种能以简易的方式编译、处理低级存储器、产生少量的机器码以及不需要任何运行环境支持便能运行的编程语言。

    85 引用 • 165 回帖 • 1 关注

相关帖子

欢迎来到这里!

我们正在构建一个小众社区,大家在这里相互信任,以平等 • 自由 • 奔放的价值观进行分享交流。最终,希望大家能够找到与自己志同道合的伙伴,共同成长。

注册 关于
请输入回帖内容 ...

推荐标签 标签

  • Python

    Python 是一种面向对象、直译式电脑编程语言,具有近二十年的发展历史,成熟且稳定。它包含了一组完善而且容易理解的标准库,能够轻松完成很多常见的任务。它的语法简捷和清晰,尽量使用无异义的英语单词,与其它大多数程序设计语言使用大括号不一样,它使用缩进来定义语句块。

    556 引用 • 674 回帖
  • 思源笔记

    思源笔记是一款隐私优先的个人知识管理系统,支持完全离线使用,同时也支持端到端加密同步。

    融合块、大纲和双向链接,重构你的思维。

    24709 引用 • 101459 回帖
  • Maven

    Maven 是基于项目对象模型(POM)、通过一小段描述信息来管理项目的构建、报告和文档的软件项目管理工具。

    186 引用 • 318 回帖 • 263 关注
  • sts
    2 引用 • 2 回帖 • 225 关注
  • 爬虫

    网络爬虫(Spider、Crawler),是一种按照一定的规则,自动地抓取万维网信息的程序。

    106 引用 • 275 回帖 • 1 关注
  • 前端

    前端技术一般分为前端设计和前端开发,前端设计可以理解为网站的视觉设计,前端开发则是网站的前台代码实现,包括 HTML、CSS 以及 JavaScript 等。

    245 引用 • 1338 回帖
  • Gzip

    gzip (GNU zip)是 GNU 自由软件的文件压缩程序。我们在 Linux 中经常会用到后缀为 .gz 的文件,它们就是 Gzip 格式的。现今已经成为互联网上使用非常普遍的一种数据压缩格式,或者说一种文件格式。

    9 引用 • 12 回帖 • 167 关注
  • 周末

    星期六到星期天晚,实行五天工作制后,指每周的最后两天。再过几年可能就是三天了。

    14 引用 • 297 回帖
  • IDEA

    IDEA 全称 IntelliJ IDEA,是一款 Java 语言开发的集成环境,在业界被公认为最好的 Java 开发工具之一。IDEA 是 JetBrains 公司的产品,这家公司总部位于捷克共和国的首都布拉格,开发人员以严谨著称的东欧程序员为主。

    181 引用 • 400 回帖 • 1 关注
  • 大疆创新

    深圳市大疆创新科技有限公司(DJI-Innovations,简称 DJI),成立于 2006 年,是全球领先的无人飞行器控制系统及无人机解决方案的研发和生产商,客户遍布全球 100 多个国家。通过持续的创新,大疆致力于为无人机工业、行业用户以及专业航拍应用提供性能最强、体验最佳的革命性智能飞控产品和解决方案。

    2 引用 • 14 回帖 • 1 关注
  • ActiveMQ

    ActiveMQ 是 Apache 旗下的一款开源消息总线系统,它完整实现了 JMS 规范,是一个企业级的消息中间件。

    19 引用 • 13 回帖 • 679 关注
  • Logseq

    Logseq 是一个隐私优先、开源的知识库工具。

    Logseq is a joyful, open-source outliner that works on top of local plain-text Markdown and Org-mode files. Use it to write, organize and share your thoughts, keep your to-do list, and build your own digital garden.

    7 引用 • 69 回帖 • 1 关注
  • Android

    Android 是一种以 Linux 为基础的开放源码操作系统,主要使用于便携设备。2005 年由 Google 收购注资,并拉拢多家制造商组成开放手机联盟开发改良,逐渐扩展到到平板电脑及其他领域上。

    335 引用 • 324 回帖
  • 新人

    让我们欢迎这对新人。哦,不好意思说错了,让我们欢迎这位新人!
    新手上路,请谨慎驾驶!

    52 引用 • 228 回帖 • 1 关注
  • Git

    Git 是 Linux Torvalds 为了帮助管理 Linux 内核开发而开发的一个开放源码的版本控制软件。

    211 引用 • 358 回帖 • 1 关注
  • 招聘

    哪里都缺人,哪里都不缺人。

    189 引用 • 1057 回帖 • 1 关注
  • 安装

    你若安好,便是晴天。

    132 引用 • 1184 回帖
  • GitHub

    GitHub 于 2008 年上线,目前,除了 Git 代码仓库托管及基本的 Web 管理界面以外,还提供了订阅、讨论组、文本渲染、在线文件编辑器、协作图谱(报表)、代码片段分享(Gist)等功能。正因为这些功能所提供的便利,又经过长期的积累,GitHub 的用户活跃度很高,在开源世界里享有深远的声望,并形成了社交化编程文化(Social Coding)。

    210 引用 • 2040 回帖
  • Follow
    4 引用 • 12 回帖 • 7 关注
  • 区块链

    区块链是分布式数据存储、点对点传输、共识机制、加密算法等计算机技术的新型应用模式。所谓共识机制是区块链系统中实现不同节点之间建立信任、获取权益的数学算法 。

    92 引用 • 752 回帖 • 1 关注
  • 酷鸟浏览器

    安全 · 稳定 · 快速
    为跨境从业人员提供专业的跨境浏览器

    3 引用 • 59 回帖 • 45 关注
  • Sphinx

    Sphinx 是一个基于 SQL 的全文检索引擎,可以结合 MySQL、PostgreSQL 做全文搜索,它可以提供比数据库本身更专业的搜索功能,使得应用程序更容易实现专业化的全文检索。

    1 引用 • 213 关注
  • Spark

    Spark 是 UC Berkeley AMP lab 所开源的类 Hadoop MapReduce 的通用并行框架。Spark 拥有 Hadoop MapReduce 所具有的优点;但不同于 MapReduce 的是 Job 中间输出结果可以保存在内存中,从而不再需要读写 HDFS,因此 Spark 能更好地适用于数据挖掘与机器学习等需要迭代的 MapReduce 的算法。

    74 引用 • 46 回帖 • 568 关注
  • PWA

    PWA(Progressive Web App)是 Google 在 2015 年提出、2016 年 6 月开始推广的项目。它结合了一系列现代 Web 技术,在网页应用中实现和原生应用相近的用户体验。

    14 引用 • 69 回帖 • 176 关注
  • QQ

    1999 年 2 月腾讯正式推出“腾讯 QQ”,在线用户由 1999 年的 2 人(马化腾和张志东)到现在已经发展到上亿用户了,在线人数超过一亿,是目前使用最广泛的聊天软件之一。

    45 引用 • 557 回帖 • 1 关注
  • Ngui

    Ngui 是一个 GUI 的排版显示引擎和跨平台的 GUI 应用程序开发框架,基于
    Node.js / OpenGL。目标是在此基础上开发 GUI 应用程序可拥有开发 WEB 应用般简单与速度同时兼顾 Native 应用程序的性能与体验。

    7 引用 • 9 回帖 • 397 关注
  • Solidity

    Solidity 是一种智能合约高级语言,运行在 [以太坊] 虚拟机(EVM)之上。它的语法接近于 JavaScript,是一种面向对象的语言。

    3 引用 • 18 回帖 • 430 关注