BosonNLP分词技术解密

本贴最后更新于 3488 天前,其中的信息可能已经时移世异

在九月初 BosonNLP 全面开放了分词和词性标注引擎以后,很多尤其是从事数据处理和自然语言研究的朋友在试用后很好奇,玻森如何能够做到目前的高准确率?希望这篇文章能够帮助大家理解玻森分词背后的实现原理。

众所周知,中文并不像英文那样词与词之间用空格隔开,因此,在一般情况下,中文分词与词性标注往往是中文自然语言处理的第一步。一个好的分词系统是有效进行中文相关数据分析和产品开发的重要保证。

玻森采用的结构化预测模型是传统线性条件随机场(Linear-chain CRF)的一个变种。在过去及几年的分词研究中,虽然以字符为单位进行编码,从而预测分词与词性标注的文献占到了主流。这类模型虽然实现较容易,但比较难捕捉到高阶预测变量之间的关系。比如传统进行词性标注问题上使用 Tri-gram 特征能够得到较高准确率的结果,但一阶甚至高阶的字符 CRF 都难以建立这样的关联。所以玻森在字符编码以外加入了词语的信息,使这种高阶作用同样能被捕捉。
分词与词性标注中,新词识别与组合切分歧义是两个核心挑战。玻森在这方面做了不少的优化,包括对特殊字符的处理,对比较有规律的构词方式的特征捕捉等。例如,近些年比较流行采用半监督的方式,通过使用在大规模无标注数据上的统计数据来改善有监督学习中的标注结果,也在我们的分词实现上有所应用。比如通过使用 accressory variety 作为特征,能够比较有效发现不同领域的新词,提升泛化能力。

我们都知道上下文信息是解决组合切分歧义的重要手段。而作为一个面向实际商用环境的算法,除了在准确率上的要求之外,还需要注意模型算法的时间复杂度需要足够高效。例如,相比于普通的 Linear-chain CRF,Skip-chain CRF 因为加入了更多的上下文信息,能够在准确率上达到更好的效果,但因为其它在训练和解码过程,不论是精确算法还是近似算法,都难以达到我们对速度的要求,所以并没有在我们最终实现中采用。一个比较有趣的分词改进是我们捕捉了中文中常见的固定搭配词对信息。譬如,如 “得出某个结论”、 “回答某个提问”等。如果前面出现 “得出” ,后面出现 “结论” ,那么“得出”和“结论”作为一个词语出现的可能性就会很大,与这种相冲突的分词方案的可能性就会很小。这类固定搭配也可以被建模,用于解决部分分词错误的问题。

怎样确定两个词是否是固定的搭配呢?我们通过计算两个词间的归一化逐点互信息(NPMI)来确定两个词的搭配关系。逐点互信息(PMI),经常用在自然语言处理中,用于衡量两个事件的紧密程度。归一化逐点互信息(NPMI)是逐点互信息的归一化形式,将逐点互信息的值归一化到-1 到 1 之间。如果两个词在一定距离范围内共同出现,则认为这两个词共现。筛选出 NPMI 高的两个词作为固定搭配,然后将这组固定搭配作为一个组合特征添加到分词程序中。如“回答”和“问题”是一组固定的搭配,如果在标注“回答”的时候,就会找后面一段距离范围内是否有“问题”,如果存在那么该特征被激活。

归一化逐点互信息(npmi)的计算公式

逐点互信息(pmi)的计算公式

可以看出,如果我们提取固定搭配不限制距离,会使后面偶然出现某个词的概率增大,降低该统计的稳定性。在具体实现中,我们限定了成为固定搭配的词对在原文中的距离必须小于一个常数。具体来看,可以采用倒排索引,通过词找到其所在的位置,进而判断其位置是否在可接受的区间。这个简单的实现有个比较大的问题,即在特定构造的文本中,判断两个词是否为固定搭配有可能需要遍历位置数组,每次查询就有 O(n)的时间复杂度了,并且可以使用二分查找进一步降低复杂度为 O(logn)。

其实这个词对检索问题有一个更高效的算法实现。我们采用滑动窗口的方法进行统计:在枚举词的同时维护一张词表,保存在当前位置前后一段距离中出现的可能成词的字符序列;当枚举词的位置向后移动时,窗口也随之移动。这样在遍历到 “回答” 的时候,就可以通过查表确定后面是否有 “问题” 了,同样在遇到后面的 “问题” 也可以通过查表确定前面是否有 “回答”。当枚举下一个词的时候,词表也相应地进行调整。采用哈希表的方式查询词表,这样计算一个固定搭配型时间复杂度就可以是 O(1)了。

通过引入上述的上下文的信息,分词与词性标注的准确率有近 1% 的提升,而对算法的时间复杂度没有改变。我们也在不断迭代升级以保证引擎能够越来越准确,改善其通用性和易用性。今后我们也会在 BosonNLP 微信账户更多享我们在自然语言处理方面的经验,欢迎关注!

  • BosonNLP
    3 引用 • 5 回帖
  • 分词
    4 引用 • 3 回帖
  • 词性标注
    1 引用
  • 自然语言处理

    自然语言处理是计算机科学领域与人工智能领域中的一个重要方向。它研究能实现人与计算机之间用自然语言进行有效通信的各种理论和方法。

    18 引用 • 10 回帖 • 2 关注

相关帖子

欢迎来到这里!

我们正在构建一个小众社区,大家在这里相互信任,以平等 • 自由 • 奔放的价值观进行分享交流。最终,希望大家能够找到与自己志同道合的伙伴,共同成长。

注册 关于
请输入回帖内容 ...

推荐标签 标签

  • 微服务

    微服务架构是一种架构模式,它提倡将单一应用划分成一组小的服务。服务之间互相协调,互相配合,为用户提供最终价值。每个服务运行在独立的进程中。服务于服务之间才用轻量级的通信机制互相沟通。每个服务都围绕着具体业务构建,能够被独立的部署。

    96 引用 • 155 回帖 • 4 关注
  • Ruby

    Ruby 是一种开源的面向对象程序设计的服务器端脚本语言,在 20 世纪 90 年代中期由日本的松本行弘(まつもとゆきひろ/Yukihiro Matsumoto)设计并开发。在 Ruby 社区,松本也被称为马茨(Matz)。

    7 引用 • 31 回帖 • 249 关注
  • 人工智能

    人工智能(Artificial Intelligence)是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门技术科学。

    167 引用 • 314 回帖
  • Hprose

    Hprose 是一款先进的轻量级、跨语言、跨平台、无侵入式、高性能动态远程对象调用引擎库。它不仅简单易用,而且功能强大。你无需专门学习,只需看上几眼,就能用它轻松构建分布式应用系统。

    9 引用 • 17 回帖 • 636 关注
  • Thymeleaf

    Thymeleaf 是一款用于渲染 XML/XHTML/HTML5 内容的模板引擎。类似 Velocity、 FreeMarker 等,它也可以轻易的与 Spring 等 Web 框架进行集成作为 Web 应用的模板引擎。与其它模板引擎相比,Thymeleaf 最大的特点是能够直接在浏览器中打开并正确显示模板页面,而不需要启动整个 Web 应用。

    11 引用 • 19 回帖 • 390 关注
  • Google

    Google(Google Inc.,NASDAQ:GOOG)是一家美国上市公司(公有股份公司),于 1998 年 9 月 7 日以私有股份公司的形式创立,设计并管理一个互联网搜索引擎。Google 公司的总部称作“Googleplex”,它位于加利福尼亚山景城。Google 目前被公认为是全球规模最大的搜索引擎,它提供了简单易用的免费服务。不作恶(Don't be evil)是谷歌公司的一项非正式的公司口号。

    49 引用 • 192 回帖
  • Hexo

    Hexo 是一款快速、简洁且高效的博客框架,使用 Node.js 编写。

    22 引用 • 148 回帖 • 16 关注
  • Vue.js

    Vue.js(读音 /vju ː/,类似于 view)是一个构建数据驱动的 Web 界面库。Vue.js 的目标是通过尽可能简单的 API 实现响应的数据绑定和组合的视图组件。

    268 引用 • 666 回帖
  • Gzip

    gzip (GNU zip)是 GNU 自由软件的文件压缩程序。我们在 Linux 中经常会用到后缀为 .gz 的文件,它们就是 Gzip 格式的。现今已经成为互联网上使用非常普遍的一种数据压缩格式,或者说一种文件格式。

    9 引用 • 12 回帖 • 166 关注
  • JWT

    JWT(JSON Web Token)是一种用于双方之间传递信息的简洁的、安全的表述性声明规范。JWT 作为一个开放的标准(RFC 7519),定义了一种简洁的,自包含的方法用于通信双方之间以 JSON 的形式安全的传递信息。

    20 引用 • 15 回帖 • 22 关注
  • Chrome

    Chrome 又称 Google 浏览器,是一个由谷歌公司开发的网页浏览器。该浏览器是基于其他开源软件所编写,包括 WebKit,目标是提升稳定性、速度和安全性,并创造出简单且有效率的使用者界面。

    63 引用 • 289 回帖
  • Flume

    Flume 是一套分布式的、可靠的,可用于有效地收集、聚合和搬运大量日志数据的服务架构。

    9 引用 • 6 回帖 • 655 关注
  • 大数据

    大数据(big data)是指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。

    93 引用 • 113 回帖
  • DNSPod

    DNSPod 建立于 2006 年 3 月份,是一款免费智能 DNS 产品。 DNSPod 可以为同时有电信、网通、教育网服务器的网站提供智能的解析,让电信用户访问电信的服务器,网通的用户访问网通的服务器,教育网的用户访问教育网的服务器,达到互联互通的效果。

    6 引用 • 26 回帖 • 529 关注
  • TGIF

    Thank God It's Friday! 感谢老天,总算到星期五啦!

    290 引用 • 4494 回帖 • 652 关注
  • WordPress

    WordPress 是一个使用 PHP 语言开发的博客平台,用户可以在支持 PHP 和 MySQL 数据库的服务器上架设自己的博客。也可以把 WordPress 当作一个内容管理系统(CMS)来使用。WordPress 是一个免费的开源项目,在 GNU 通用公共许可证(GPLv2)下授权发布。

    66 引用 • 114 回帖 • 193 关注
  • 宕机

    宕机,多指一些网站、游戏、网络应用等服务器一种区别于正常运行的状态,也叫“Down 机”、“当机”或“死机”。宕机状态不仅仅是指服务器“挂掉了”、“死机了”状态,也包括服务器假死、停用、关闭等一些原因而导致出现的不能够正常运行的状态。

    13 引用 • 82 回帖 • 76 关注
  • 又拍云

    又拍云是国内领先的 CDN 服务提供商,国家工信部认证通过的“可信云”,乌云众测平台认证的“安全云”,为移动时代的创业者提供新一代的 CDN 加速服务。

    20 引用 • 37 回帖 • 575 关注
  • 友情链接

    确认过眼神后的灵魂连接,站在链在!

    24 引用 • 373 回帖 • 1 关注
  • Sillot

    Insights(注意当前设置 master 为默认分支)

    汐洛彖夲肜矩阵(Sillot T☳Converbenk Matrix),致力于服务智慧新彖乄,具有彖乄驱动、极致优雅、开发者友好的特点。其中汐洛绞架(Sillot-Gibbet)基于自思源笔记(siyuan-note),前身是思源笔记汐洛版(更早是思源笔记汐洛分支),是智慧新录乄终端(多端融合,移动端优先)。

    主仓库地址:Hi-Windom/Sillot

    文档地址:sillot.db.sc.cn

    注意事项:

    1. ⚠️ 汐洛仍在早期开发阶段,尚不稳定
    2. ⚠️ 汐洛并非面向普通用户设计,使用前请了解风险
    3. ⚠️ 汐洛绞架基于思源笔记,开发者尽最大努力与思源笔记保持兼容,但无法实现 100% 兼容
    29 引用 • 25 回帖 • 117 关注
  • 支付宝

    支付宝是全球领先的独立第三方支付平台,致力于为广大用户提供安全快速的电子支付/网上支付/安全支付/手机支付体验,及转账收款/水电煤缴费/信用卡还款/AA 收款等生活服务应用。

    29 引用 • 347 回帖
  • 尊园地产

    昆明尊园房地产经纪有限公司,即:Kunming Zunyuan Property Agency Company Limited(简称“尊园地产”)于 2007 年 6 月开始筹备,2007 年 8 月 18 日正式成立,注册资本 200 万元,公司性质为股份经纪有限公司,主营业务为:代租、代售、代办产权过户、办理银行按揭、担保、抵押、评估等。

    1 引用 • 22 回帖 • 786 关注
  • CongSec

    本标签主要用于分享网络空间安全专业的学习笔记

    1 引用 • 1 回帖 • 31 关注
  • 阿里巴巴

    阿里巴巴网络技术有限公司(简称:阿里巴巴集团)是以曾担任英语教师的马云为首的 18 人,于 1999 年在中国杭州创立,他们相信互联网能够创造公平的竞争环境,让小企业通过创新与科技扩展业务,并在参与国内或全球市场竞争时处于更有利的位置。

    43 引用 • 221 回帖 • 62 关注
  • Mobi.css

    Mobi.css is a lightweight, flexible CSS framework that focus on mobile.

    1 引用 • 6 回帖 • 757 关注
  • 游戏

    沉迷游戏伤身,强撸灰飞烟灭。

    181 引用 • 821 回帖
  • Mac

    Mac 是苹果公司自 1984 年起以“Macintosh”开始开发的个人消费型计算机,如:iMac、Mac mini、Macbook Air、Macbook Pro、Macbook、Mac Pro 等计算机。

    168 引用 • 597 回帖