阿里 memcached 客户端源码分析

本贴最后更新于 3178 天前,其中的信息可能已经物是人非

由于需要对GAP平台的缓存解决方案进行扩充,我们选择了memcached作为分布式缓存的一种可选方案,它是基于内存的一种分布式缓存系统,主要面向较小的对象,比如数据库返回值,api调用返回值以及页面渲染结果等,同时在选择客户端的时候,使用了阿里文初改造后的客户端memchaced-client-forjava,该客户端经过阿里内部大量实际项目的线上运行,表现都很稳定。下面首先会分析该客户端的源码结构,然后说说我们对其改造的部分。

源码分析

memcached本身是一个集中式的内存缓存系统,对于分布式的支持服务端并没有实现,只有通过客户端实现;再者,memcached是基于TCP/UDP进行通信,只要客户端语言支持TCP/UDP即可实现客户端,并且可以根据需要进行功能扩展。memchaced-client-forjava 既是使用java语言实现的客户端,并且实现了自己的功能扩展,下面这张类图描述了其主要类之间的关系。

memcached

几个重要类的说明:

  • MemcachedCacheManager: 管理类,负责缓存服务端,客户端,以及相关资源池的初始化工作,获取客户端等等
  • MemcachedCache:memcached缓存实体类,实现了所有的缓存API,实际上也会调用MemcachedClient进行操作
  • MemcachedClient:memcached缓存客户端,一个逻辑概念,负责与服务端实例的实际交互,通过调用sockiopool中的socket
  • SockIOPool:socket连接资源池,负责与memcached服务端进行交互
  • ClusterProcessor:集群内数据异步操作工具类

客户端可配置化

MemcachedCacheManager是入口,其start方法读取配置文件memcached.xml,初始化各个组建,包括memcached客户端,socket连接池以及集群节点。
memcached客户端是个逻辑概念,并不是和memcached服务端实例一一对应的,可以认为其是一个逻辑环上的某个节点(后面会讲到hash一致性算法时涉及),该配置文件中,可配置一个或多个客户端,每个客户端可配置一个socketPool连接池,如下:

<client name="mclient0" compressEnable="true" defaultEncoding="UTF-8" socketpool="pool0”>
    <errorHandler>com.alisoft.xplatform.asf.cache.memcached.MemcachedErrorHandler</errorHandler>
</client>

扩容

socketpool连接池配置的才是真正连接的memcached服务实例,当然,你可以连接多个memcached服务实例,多个实例可以分布在一台或者多台物理机器上。这样,随着实际业务数据量的增加,可以对现有缓存容量进行扩容,只需在servers中增加memcached实例即可,或者增加多个socketpool配置项,配置如下:

<socketpool name="pool0" failover="true" initConn="5" minConn="5" maxConn="250" maintSleep="5000" nagle="false" socketTO="3000" aliveCheck="true">
    <servers>192.168.1.66:11211,192.168.1.68:11211</servers>
</socketpool>

初始化过程

上文提及的MemcachedCacheManager,该类功能包括有初始化各种资源池,获取所有客户端,重新加载配置文件以及集群复制等。我们重点分析方法start,该方法首先加载配置文件,然后初始化资源池,即方法initMemCacheClientPool,该方法中定义了三个资源池,即socket连接资源池socketpool,memcachedcache资源池cachepool,以及由客户端组成的集群资源池clusterpool,这些资源池的数据结构都是线程安全的ConcurrentHashMap,保证了并发效率。将配置信息分别实例化后,再分别放入对应的资源池容器中,socket连接放入socketpool中,memcached客户端放入cachepool中,定义的集群节点放入clusterpool中。
注意,在实例化socket连接池资源socketpool时,会调用每个pool的初始化方法pool.initialize(),来映射memcached实例到HASH环上,以及初始化socket连接。

单点问题

memcached的分布式,解决了容量水平扩容的问题,但是当某个节点失效时,还是会丢失一部分数据,单点故障依然存在,分布式只是解决了数据整体失效问题,而在实际项目中,特别是GAP平台适应的企业级项目中,是不允许数据不一致的,所以对每一份保存的数据都需要进行容灾处理,那么对于定义的每个memcached客户端,都至少增加一个新客户端与其组成一个cluster集群,当更新或者查找数据时,会先定位到该集群中某个节点,如果该节点失效,就去另外一个节点进行操作。在实际项目中,通过合理规划配置cluster和client(memcached客户端),可以最大限度的避免单点故障(当所有client都失效时还会丢失数据)。在配置文件中,集群配置如下:

<cluster name="cluster1" mode="active">
    <memCachedClients>mclient1,mclient2</memCachedClients>
</cluster>

下图展现了扩容和单点故障解决方案:

scalout

HASH一致性算法

在memcached支持分布式部署场景下,如何获取一个memcached实例?如何平均分配memcached实例的存储?这些需要一个算法来实现,我们选择的是HASH一致性算法,具体就体现在客户端如何获取一个连接memcached服务端的socket上,也就是如何定位memcached实例的问题?算法要求能够根据每次提供的同一个key获得同一个实例。

HASH闭环的初始化

本质上,hash一致性算法是需要实现一个逻辑环,如图所示,环上所有的节点即为一个memcached实例,如何实现?其实是根据每个memcached实例所在的ip地址,将所有的实例映射到hash数值空间中,构成一个闭合的圆环。

hash

HASH环映射的初始化的代码位于SocketIOPool.populateConsistentBuckets方法中,主要代码如下:

private void populateConsistentBuckets()
     {
         ……...
          for (int i = 0; i < servers.length; i++)
          {
               int thisWeight = 1;
               if (this.weights != null && this.weights[i] != null)
                    thisWeight = this.weights[i];
                    double factor = Math .floor(((double) (40 * this.servers.length * thisWeight)) / (double) this.totalWeight);
               for (long j = 0; j < factor; j++)
               {
                    byte[] d = md5.digest((servers[i] + "-" + j).getBytes());
                    for (int h = 0; h < 4; h++)
                    {
                         // k 的值使用MD5hash算法计算获得
                         Long k = ((long) (d[3 + h * 4] & 0xFF) << 24)
                                   | ((long) (d[2 + h * 4] & 0xFF) << 16)
                                   | ((long) (d[1 + h * 4] & 0xFF) << 8)
                                   | ((long) (d[0 + h * 4] & 0xFF));
                         // 用treemap来存储memcached实例所在的ip地址,
                         // 也就是将每个缓存实例所在的ip地址映射到由k组成的hash环上
                        consistentBuckets.put(k, servers[i]);
                         if (log.isDebugEnabled())
                              log.debug("++++ added " + servers[i]
                                        + " to server bucket");
                    }
               }
           ……...
          }
     }

获取socket连接

在实际获取memcahced实例所在服务器的soket时,只要使用基于同一个存储对象的key的MD5Hash算法,就可以获得相同的memcached实例所在的ip地址,也就是可以准确定位到hash环上相同的节点,代码位于SocketIOPool.getSock方法中,主要代码如下:

public SockIO getSock(String key, Integer hashCode){
          ………….
// from here on, we are working w/ multiple servers // keep trying different servers until we find one // making sure we only try each server one time Set&lt;String&gt; tryServers = new HashSet&lt;String&gt;(Arrays.asList(servers)); // get initial bucket // 通过key值计算hash值,使用的是基于MD5的算法 long bucket = getBucket(key, hashCode); String server = (this.hashingAlg == CONSISTENT_HASH) ? consistentBuckets .get(bucket) : buckets.g et((int) bucket); &hellip;&hellip;&hellip;&hellip;... } private long getBucket(String key, Integer hashCode) { / / 通过key值计算hash值,使用的是基于MD5的算法 long hc = getHash(key, hashCode); if (this.hashingAlg == CONSISTENT_HASH) { return findPointFor(hc); } else { long bucket = hc % buckets.size(); if (bucket &lt; 0) bucket *= -1; return bucket; } } /** * Gets the first available key equal or above the given one, if none found, * returns the first k in the bucket * * @param k * key * @return */ private Long findPointFor(Long hv) { // this works in java 6, but still want to release support for java5 // Long k = this.consistentBuckets.ceilingKey( hv ); // return ( k == null ) ? this.consistentBuckets.firstKey() : k; // 该consistentBuckets中存储的是HASH结构初始化时,存入的所有memcahced实例节点,也就是整个hash环 // tailMap方法是取出大于等于hv的所有节点,并且是递增有序的 SortedMap&lt;Long, String&gt; tmap = this.consistentBuckets.tailMap(hv); // 如果tmap为空,就默认返回hash环上的第一个值,否则就返回最接近hv值的那个节点 return (tmap.isEmpty()) ? this.consistentBuckets.firstKey() : tmap .firstKey(); } /** * Returns a bucket to check for a given key. * * @param key * String key cache is stored under * @return int bucket */ private long getHash(String key, Integer hashCode) { if (hashCode != null) { if (hashingAlg == CONSISTENT_HASH) return hashCode.longValue() &amp; 0xffffffffL; else return hashCode.longValue(); } else { switch (hashingAlg) { case NATIVE_HASH: return (long) key.hashCode(); case OLD_COMPAT_HASH: return origCompatHashingAlg(key); case NEW_COMPAT_HASH: return newCompatHashingAlg(key); case CONSISTENT_HASH: return md5HashingAlg(key); default: // use the native hash as a default hashingAlg = NATIVE_HASH; return (long) key.hashCode(); } } } /** * Internal private hashing method. * * MD5 based hash algorithm for use in the consistent hashing approach. * * @param key * @return */ private static long md5HashingAlg(String key) { / /通过key值计算hash值,使用的是基于MD5的算法 MessageDigest md5 = MD5.get(); md5.reset(); md5.update(key.getBytes()); byte[] bKey = md5.digest(); long res = ((long) (bKey[3] &amp; 0xFF) &lt;&lt; 24) | ((long) (bKey[2] &amp; 0xFF) &lt;&lt; 16) | ((long) (bKey[1] &amp; 0xFF) &lt;&lt; 8) | (long) (bKey[0] &amp; 0xFF); return res; }</pre>

通过以上代码的分析,整个memcahced服务端实例HASH环的初始化,以及数据更新和查找使用的算法都是基于同一种算法,这就保证了通过同一个key获得的memcahced实例为同一个。

socket连接池

这部分单独介绍,请猛烈地戳这里

容灾、故障转移以及性能

衡量系统的稳定性,很大程度上是对各种异常情况的处理,充分考虑异常情况,以及合理处理异常是对系统设计人员的要求,下面看看在故障处理和容灾方面系统都做了那些工作。

  • 定位memcached实例时,当第一次定位失败,会对所有其他的属于同一个socketpool中的memcahced实例进行定位,找到一个可用的,代码如下:
// log that we tried
 // 先删除定位失败的实例
 tryServers.remove(server);
 if (tryServers.isEmpty())
     break;
 // if we failed to get a socket from this server
 // then we try again by adding an incrementer to the
 // current key and then rehashing
 int rehashTries = 0;
 while (!tryServers.contains(server))
 {
   // 重新计算key值
   String newKey = new StringBuilder().append(rehashTries).append(key).toString();
   // String.format( "%s%s", rehashTries, key );
   if (log.isDebugEnabled())
       log.debug("rehashing with: " + newKey);
   // 去HASH环上定位实例节点
   bucket = getBucket(newKey, null);
   server=(this.hashingAlg == CONSISTENT_HASH) ? consistentBuckets.get(bucket) : buckets.get((int) bucket);
   rehashTries++;
  }
  • 查找数据时,当前节点获取不到,会尝试到所在集群中其他的节点查找,成功后,会将数据复制到原先失效的节点中,代码如下:
public Object get(String key)
     {
          Object result = null;
          boolean isError = false;  
       …….......
          if (result == null && helper.hasCluster())
           if (isError || helper.getClusterMode().equals(MemcachedClientClusterConfig.CLUSTER_MODE_ACTIVE))
          {
               List<MemCachedClient> caches = helper.getClusterCache();
               for(MemCachedClient cache : caches)
               {
                    if (getCacheClient(key).equals(cache))
                         continue;
                    try{ try
                         {
                              result = cache.get(key);
                         }
                         catch(MemcachedException ex)
                         {
                              Logger.error(new StringBuilder(helper.getCacheName())
                                   .append(" cluster get error"),ex);
                              continue;
                         }
                         //仅仅判断另一台备份机器,不多次判断,防止效率低下
                         if (helper.getClusterMode().equals(MemcachedClientClusterConfig.CLUSTER_MODE_ACTIVE) && result != null)
                         {
                              Object[] commands = new Object[]{CacheCommand.RECOVER,key,result};
                             // 加入队列,异步执行复制数据
                              addCommandToQueue(commands);
                         }
                         break;    
                    }
                    catch(Exception e)
                    {
                     Logger.error(new StringBuilder(helper.getCacheName()) .append(" cluster get error"),e);
                    }
               }
          }
          return result;
     }
  • 更新数据时,异步更新到集群内其他节点,示例代码如下:
public boolean add(String key, Object value)
     {
          boolean result = getCacheClient(key).add(key,value);
          if (helper.hasCluster())
          {
               Object[] commands = new Object[]{CacheCommand.ADD,key,value};
               // 加入队列,异步执行
               addCommandToQueue(commands);
          }
          return result;
     }
  • 删除数据时,需要同步执行,如果异步的话,会产生脏数据,代码如下:
public Object remove(String key)
     {
          Object result = getCacheClient(key).delete(key);
          //异步删除由于集群会导致无法被删除,因此需要一次性全部清除
          if (helper.hasCluster())
          {
               List<MemCachedClient> caches = helper.getClusterCache();
for(MemCachedClient cache : caches) { if (getCacheClient(key).equals(cache)) continue; try { cache.delete(key); } catch(Exception ex) { Logger.error(new StringBuilder(helper.getCacheName()) .append(" cluster remove error"),ex); } } } return result; }</pre>
  • 异步执行集群内数据同步,因为不可能每次数据都要同步执行到集群内每个节点,这样会降低系统性能;所以在构造MemcachedCache对象时,会建立一个队列,线程安全的linked阻塞队列LinkedBlockingQueue,将所有需要异步执行的命令放入队列中,异步执行,具体异步执行由ClusterProcessor类负责。
public MemcachedCache(MemCachedClientHelper helper,int statisticsInterval)
     {
          this.helper = helper; 
          dataQueue = new LinkedBlockingQueue<Object[]>();
         ………
          processor = new ClusterProcessor(dataQueue,helper);
          processor.setDaemon(true);
          processor.start();
     }
  • 本地缓存的使用是为了降低连接服务端的IO开销,当有些数据变化频率很低时,完全可以放在应用服务器本地,同时可以设置有效时间,直接获取。DefaultCacheImpl类为本地缓存的实现类,在构造MemcachedCache对象时,即初始化。

每次查找数据时,会先查找本地缓存,如果没有再去查缓存,结束后将数据让如本地缓存中,代码如下:

public Object get(String key, int localTTL)
     {
          Object result = null;
         // 本地缓存中查找
          result = localCache.get(key);
          if (result == null)
          {
               result = get(key);
               if (result != null)
               {
                    Calendar calendar = Calendar.getInstance();
                    calendar.add(Calendar.SECOND, localTTL);
                    // 放入本地缓存
                    localCache.put(key, result,calendar.getTime());
               }
          }
          return result;
     }

增加缓存数据时,会删除本地缓存中对应的数据,代码如下:

public Object put(String key, Object value, Date expiry)
     {
          boolean result = getCacheClient(key).set(key,value,expiry);
          //移除本地缓存的内容
          if (result) localCache.remove(key);
        ……..
          return value;
     }

改造部分

据以上分析,我们通过封装,做到了客户端的可配置化,memcached实例的水平扩展,通过集群解决了单点故障问题,并且保证了应用程序只要每次使用相同的数据对象的key值即可获取相同的memcached实例进行操作。但是,为了使缓存的使用对于应用程序来说完全透明,我们对cluster部分进行了再次封装,即把cluster看做一个node,根据cluster名称属性,进行HASH数值空间计算(同样基于MD5算法),映射到一个HASH环上,如下图:

cluster

这部分逻辑放在初始化资源池clusterpool时进行(即放在MemcahedCacheManager.initMemCacheClientPool方法中),与上文中所描述的memcached实例HASH环映射的逻辑一致,部分代码如下:

//populate cluster node to hash consistent Buckets
 MessageDigest md5 = MD5.get();
 // 使用cluster的名称计算HASH数值空间
 byte[] d = md5.digest((node.getName()).getBytes());
 for (int h = 0; h < 4; h++)
 {
    Long k = ((long) (d[3 + h * 4] & 0xFF) << 24)
                        | ((long) (d[2 + h * 4] & 0xFF) << 16)
                        | ((long) (d[1 + h * 4] & 0xFF) << 8)
                        | ((long) (d[0 + h * 4] & 0xFF));
   consistentClusterBuckets.put(k, node.getName());
   if (log.isDebugEnabled())
        log.debug("++++ added " + node.getName() + " to cluster bucket");
 } 

在进行缓存操作时,仍然使用数据对象的key值获取到某个cluster节点,然后再使用取余算法(这种算法也是经常用到的分布式定位算法,但是有局限性,即随着节点数的增减,定位越来越不准确),拿到cluster中的某个节点,在进行缓存的操作;定位hash环上cluster节点的逻辑也与上文一样,这里不在赘述。部分定位cluster中节点的取余算法代码如下:

public IMemcachedCache getCacheClient(String key){
       ………….
       String clusterNode = getClusterNode(key);
        MemcachedClientCluster mcc = clusterpool.get(clusterNode);
        List<IMemcachedCache> memcachedCachesClients = mcc.getCaches();
        //根据取余算法获取集群中的某一个缓存节点
        if (!memcachedCachesClients.isEmpty())
        {
            long keyhash = key.hashCode();
            int index = (int)keyhash % memcachedCachesClients.size();
            if (index < 0 )
                index *= -1;
            return memcachedCachesClients.get(index);
        }
        return null;
    }

这样,对于应用来说,配置好资源池以后,无需关心那个集群或者客户端节点,直接通过MemcachedCacheManager获取到某个memcachedcache,然后进行缓存操作即可。

最后,使用GAP平台分布式缓存组件,需要提前做好容量规划,集群和客户端事先配置好;另外,缓存组件没有提供数据持久化功能。

相关帖子

欢迎来到这里!

我们正在构建一个小众社区,大家在这里相互信任,以平等 • 自由 • 奔放的价值观进行分享交流。最终,希望大家能够找到与自己志同道合的伙伴,共同成长。

注册 关于
请输入回帖内容 ...

推荐标签 标签

  • Logseq

    Logseq 是一个隐私优先、开源的知识库工具。

    Logseq is a joyful, open-source outliner that works on top of local plain-text Markdown and Org-mode files. Use it to write, organize and share your thoughts, keep your to-do list, and build your own digital garden.

    7 引用 • 69 回帖
  • iOS

    iOS 是由苹果公司开发的移动操作系统,最早于 2007 年 1 月 9 日的 Macworld 大会上公布这个系统,最初是设计给 iPhone 使用的,后来陆续套用到 iPod touch、iPad 以及 Apple TV 等产品上。iOS 与苹果的 Mac OS X 操作系统一样,属于类 Unix 的商业操作系统。

    89 引用 • 150 回帖
  • 百度

    百度(Nasdaq:BIDU)是全球最大的中文搜索引擎、最大的中文网站。2000 年 1 月由李彦宏创立于北京中关村,致力于向人们提供“简单,可依赖”的信息获取方式。“百度”二字源于中国宋朝词人辛弃疾的《青玉案·元夕》词句“众里寻他千百度”,象征着百度对中文信息检索技术的执著追求。

    63 引用 • 785 回帖 • 92 关注
  • 阿里云

    阿里云是阿里巴巴集团旗下公司,是全球领先的云计算及人工智能科技公司。提供云服务器、云数据库、云安全等云计算服务,以及大数据、人工智能服务、精准定制基于场景的行业解决方案。

    84 引用 • 324 回帖
  • PWL

    组织简介

    用爱发电 (Programming With Love) 是一个以开源精神为核心的民间开源爱好者技术组织,“用爱发电”象征开源与贡献精神,加入组织,代表你将遵守组织的“个人开源爱好者”的各项条款。申请加入:用爱发电组织邀请帖
    用爱发电组织官网:https://programmingwithlove.stackoverflow.wiki/

    用爱发电组织的核心驱动力:

    • 遵守开源守则,体现开源&贡献精神:以分享为目的,拒绝非法牟利。
    • 自我保护:使用适当的 License 保护自己的原创作品。
    • 尊重他人:不以各种理由、各种漏洞进行未经允许的抄袭、散播、洩露;以礼相待,尊重所有对社区做出贡献的开发者;通过他人的分享习得知识,要留下足迹,表示感谢。
    • 热爱编程、热爱学习:加入组织,热爱编程是首当其要的。我们欢迎热爱讨论、分享、提问的朋友,也同样欢迎默默成就的朋友。
    • 倾听:正确并恳切对待、处理问题与建议,及时修复开源项目的 Bug ,及时与反馈者沟通。不抬杠、不无视、不辱骂。
    • 平视:不诋毁、轻视、嘲讽其他开发者,主动提出建议、施以帮助,以和谐为本。只要他人肯努力,你也可能会被昔日小看的人所超越,所以请保持谦虚。
    • 乐观且活跃:你的努力决定了你的高度。不要放弃,多年后回头俯瞰,才会发现自己已经成就往日所仰望的水平。积极地将项目开源,帮助他人学习、改进,自己也会获得相应的提升、成就与成就感。
    1 引用 • 487 回帖 • 3 关注
  • Ant-Design

    Ant Design 是服务于企业级产品的设计体系,基于确定和自然的设计价值观上的模块化解决方案,让设计者和开发者专注于更好的用户体验。

    17 引用 • 23 回帖 • 1 关注
  • GAE

    Google App Engine(GAE)是 Google 管理的数据中心中用于 WEB 应用程序的开发和托管的平台。2008 年 4 月 发布第一个测试版本。目前支持 Python、Java 和 Go 开发部署。全球已有数十万的开发者在其上开发了众多的应用。

    14 引用 • 42 回帖 • 813 关注
  • Webswing

    Webswing 是一个能将任何 Swing 应用通过纯 HTML5 运行在浏览器中的 Web 服务器,详细介绍请看 将 Java Swing 应用变成 Web 应用

    1 引用 • 15 回帖 • 640 关注
  • Flutter

    Flutter 是谷歌的移动 UI 框架,可以快速在 iOS 和 Android 上构建高质量的原生用户界面。 Flutter 可以与现有的代码一起工作,它正在被越来越多的开发者和组织使用,并且 Flutter 是完全免费、开源的。

    39 引用 • 92 回帖 • 3 关注
  • 链滴

    链滴是一个记录生活的地方。

    记录生活,连接点滴

    174 引用 • 3852 回帖
  • Mac

    Mac 是苹果公司自 1984 年起以“Macintosh”开始开发的个人消费型计算机,如:iMac、Mac mini、Macbook Air、Macbook Pro、Macbook、Mac Pro 等计算机。

    168 引用 • 597 回帖 • 1 关注
  • GitLab

    GitLab 是利用 Ruby 一个开源的版本管理系统,实现一个自托管的 Git 项目仓库,可通过 Web 界面操作公开或私有项目。

    46 引用 • 72 回帖
  • Netty

    Netty 是一个基于 NIO 的客户端-服务器编程框架,使用 Netty 可以让你快速、简单地开发出一个可维护、高性能的网络应用,例如实现了某种协议的客户、服务端应用。

    49 引用 • 33 回帖 • 35 关注
  • QQ

    1999 年 2 月腾讯正式推出“腾讯 QQ”,在线用户由 1999 年的 2 人(马化腾和张志东)到现在已经发展到上亿用户了,在线人数超过一亿,是目前使用最广泛的聊天软件之一。

    45 引用 • 557 回帖 • 1 关注
  • 开源

    Open Source, Open Mind, Open Sight, Open Future!

    411 引用 • 3588 回帖
  • 数据库

    据说 99% 的性能瓶颈都在数据库。

    345 引用 • 745 回帖 • 1 关注
  • Sandbox

    如果帖子标签含有 Sandbox ,则该帖子会被视为“测试帖”,主要用于测试社区功能,排查 bug 等,该标签下内容不定期进行清理。

    432 引用 • 1250 回帖 • 595 关注
  • SendCloud

    SendCloud 由搜狐武汉研发中心孵化的项目,是致力于为开发者提供高质量的触发邮件服务的云端邮件发送平台,为开发者提供便利的 API 接口来调用服务,让邮件准确迅速到达用户收件箱并获得强大的追踪数据。

    2 引用 • 8 回帖 • 497 关注
  • SOHO

    为成为自由职业者在家办公而努力吧!

    7 引用 • 55 回帖 • 2 关注
  • 996
    13 引用 • 200 回帖 • 7 关注
  • FlowUs

    FlowUs.息流 个人及团队的新一代生产力工具。

    让复杂的信息管理更轻松、自由、充满创意。

    1 引用
  • Pipe

    Pipe 是一款小而美的开源博客平台。Pipe 有着非常活跃的社区,可将文章作为帖子推送到社区,来自社区的回帖将作为博客评论进行联动(具体细节请浏览 B3log 构思 - 分布式社区网络)。

    这是一种全新的网络社区体验,让热爱记录和分享的你不再感到孤单!

    133 引用 • 1124 回帖 • 112 关注
  • 周末

    星期六到星期天晚,实行五天工作制后,指每周的最后两天。再过几年可能就是三天了。

    14 引用 • 297 回帖 • 2 关注
  • Follow
    4 引用 • 12 回帖 • 13 关注
  • Sym

    Sym 是一款用 Java 实现的现代化社区(论坛/BBS/社交网络/博客)系统平台。

    下一代的社区系统,为未来而构建

    524 引用 • 4601 回帖 • 708 关注
  • BookxNote

    BookxNote 是一款全新的电子书学习工具,助力您的学习与思考,让您的大脑更高效的记忆。

    笔记整理交给我,一心只读圣贤书。

    1 引用 • 1 回帖 • 2 关注
  • HTML

    HTML5 是 HTML 下一个的主要修订版本,现在仍处于发展阶段。广义论及 HTML5 时,实际指的是包括 HTML、CSS 和 JavaScript 在内的一套技术组合。

    108 引用 • 295 回帖 • 1 关注