数据获取
import pandas as pd
import urllib.request
import tempfile
import shutil
import zipfile
import matplotlib
import numpy as np
from matplotlib import pyplot as plt
# 获取数据
temp_dir = tempfile.mkdtemp()
data_source = 'http://archive.ics.uci.edu/ml/machine-learning-databases/00275/Bike-Sharing-Dataset.zip'
zipname = temp_dir + '/Bike-Sharing-Dataset.zip'
urllib.request.urlretrieve(data_source, zipname)
# 解压
zip_ref = zipfile.ZipFile(zipname, 'r')
zip_ref.extractall(temp_dir)
zip_ref.close()
# 读取数据
daily_path = temp_dir + '/day.csv'
daily_data = pd.read_csv(daily_path)
# 把字符串数据传换成日期数据
daily_data['dteday'] = pd.to_datetime(daily_data['dteday'])
# 不关注的列
drop_list = ['instant', 'season', 'yr', 'mnth', 'holiday', 'workingday', 'weathersit', 'atemp', 'hum']
daily_data.drop(drop_list, inplace=True, axis=1)
shutil.rmtree(temp_dir)
**Attribute Information:**
Both hour.csv and day.csv have the following fields, except hr which is not available in day.csv
- instant: record index
- dteday : date
- season : season (1:springer, 2:summer, 3:fall, 4:winter)
- yr : year (0: 2011, 1:2012)
- mnth : month ( 1 to 12)
- hr : hour (0 to 23)
- holiday : weather day is holiday or not (extracted from http://dchr.dc.gov/page/holiday-schedule)
- weekday : day of the week
- workingday : if day is neither weekend nor holiday is 1, otherwise is 0.
+ weathersit :
- 1: Clear, Few clouds, Partly cloudy, Partly cloudy
- 2: Mist + Cloudy, Mist + Broken clouds, Mist + Few clouds, Mist
- 3: Light Snow, Light Rain + Thunderstorm + Scattered clouds, Light Rain + Scattered clouds
- 4: Heavy Rain + Ice Pallets + Thunderstorm + Mist, Snow + Fog
- temp : Normalized temperature in Celsius. The values are derived via (t-t_min)/(t_max-t_min), t_min=-8, t_max=+39 (only in hourly scale)
- atemp: Normalized feeling temperature in Celsius. The values are derived via (t-t_min)/(t_max-t_min), t_min=-16, t_max=+50 (only in hourly scale)
- hum: Normalized humidity. The values are divided to 100 (max)
- windspeed: Normalized wind speed. The values are divided to 67 (max)
- casual: count of casual users
- registered: count of registered users
- cnt: count of total rental bikes including both casual and registered
参数配置
# 设置图片尺寸 7" x 4"
matplotlib.rc('figure', figsize=(7, 4))
# 设置字体 7
matplotlib.rc('font', size=7)
# 不显示顶部和右侧的坐标线
matplotlib.rc('axes.spines', top=False, right=False)
# 不显示网格
matplotlib.rc('axes', grid=False)
# 设置背景颜色是白色
matplotlib.rc('axes', facecolor='white')
散点图
# 包装一个散点图的函数便于复用
def scatterplot(x_data, y_data, x_label, y_label, title):
# 创建一个绘图对象
fig, ax = plt.subplots()
# 设置数据、点的大小、点的颜色和透明度
# http://www.114la.com/other/rgb.htm ax.scatter(x_data, y_data, s=10, color='#539caf', alpha=0.75)
# 添加标题和坐标说明
ax.set_title(title)
ax.set_xlabel(x_label)
ax.set_ylabel(y_label)
# 绘制散点图
scatterplot(x_data=daily_data['temp'],
y_data=daily_data['cnt'],
x_label='Normalized temperature (C)',
y_label='Check outs',
title='Number of Check Outs vs Temperature')
曲线图
import statsmodels.api as sm
from statsmodels.stats.outliers_influence import summary_table
# 线性回归增加常数项 y=kx+b
x = sm.add_constant(daily_data['temp'])
y = daily_data['cnt']
# 普通最小二乘模型,ordinary least square model
regr = sm.OLS(y, x)
res = regr.fit()
# 从模型获得拟合数据
# 置信水平alpha=5%,st数据汇总,data数据详情,ss2数据列名
st, data, ss2 = summary_table(res, alpha=0.05)
fitted_values = data[:, 2]
# 包装曲线绘制函数
def lineplot(x_data, y_data, x_label, y_label, title):
# 创建绘图对象
_, ax = plt.subplots()
# 绘制拟合曲线,lw=linewidth,alpha=透明度
ax.plot(x_data, y_data, lw=2, color='#539caf', alpha=1)
# 添加标题和坐标说明
ax.set_title(title)
ax.set_xlabel(x_label)
ax.set_ylabel(y_label)
# 调用绘图函数
lineplot(x_data=daily_data['temp'],
y_data=fitted_values,
x_label='Normalized temperature (C)',
y_label='Check outs',
title='Line of Best Fit for Number of Check Outs vs Temperature')
带置信区间的曲线图
import statsmodels.api as sm
from statsmodels.stats.outliers_influence import summary_table
# 线性回归增加常数项 y=kx+b
x = sm.add_constant(daily_data['temp'])
y = daily_data['cnt']
# 普通最小二乘模型,ordinary least square model
regr = sm.OLS(y, x)
res = regr.fit()
# 从模型获得拟合数据
# 置信水平alpha=5%,st数据汇总,data数据详情,ss2数据列名
st, data, ss2 = summary_table(res, alpha=0.05)
fitted_values = data[:, 2]
# 获得5%置信区间的上下界
predict_mean_ci_low, predict_mean_ci_upp = data[:, 4:6].T
# 创建置信区间DataFrame,上下界
CI_df = pd.DataFrame(columns=['x_data', 'low_CI', 'upper_CI'])
CI_df['x_data'] = daily_data['temp']
CI_df['low_CI'] = predict_mean_ci_low
CI_df['upper_CI'] = predict_mean_ci_upp
# 根据x_data进行排序
CI_df.sort_values('x_data', inplace=True)
# 绘制置信区间
def lineplotCI(x_data, y_data, sorted_x, low_CI, upper_CI, x_label, y_label, title):
# 创建绘图对象
_, ax = plt.subplots()
# 绘制预测曲线
ax.plot(x_data, y_data, lw=1, color='#539caf', alpha=1, label='Fit')
# 绘制置信区间,顺序填充
ax.fill_between(sorted_x, low_CI, upper_CI, color='#539caf', alpha=0.4, label='95% CI')
# 添加标题和坐标说明
ax.set_title(title)
ax.set_xlabel(x_label)
ax.set_ylabel(y_label)
# 显示图例,配合label参数,loc=“best”自适应方式
ax.legend(loc='best')
# 调用绘图函数
lineplotCI(x_data=daily_data['temp'],
y_data=fitted_values,
sorted_x=CI_df['x_data'],
low_CI=CI_df['low_CI'],
upper_CI=CI_df['upper_CI'],
x_label='Normalized temperature (C)',
y_label='Check outs',
title='Line of Best Fit for Number of Check Outs vs Temperature')
双坐标曲线图
# 双纵坐标绘图函数
def lineplot2y(x_data, x_label, y1_data, y1_color, y1_label, y2_data, y2_color, y2_label, title):
_, ax1 = plt.subplots()
ax1.plot(x_data, y1_data, color=y1_color)
# 添加标题和坐标说明
ax1.set_ylabel(y1_label, color=y1_color)
ax1.set_xlabel(x_label)
ax1.set_title(title)
# 两个绘图对象共享横坐标轴
ax2 = ax1.twinx()
ax2.plot(x_data, y2_data, color=y2_color)
ax2.set_ylabel(y2_label, color=y2_color)
# 右侧坐标轴可见
ax2.spines['right'].set_visible(True)
# 调用绘图函数
lineplot2y(x_data=daily_data['dteday'],
x_label='Day',
y1_data=daily_data['cnt'],
y1_color='#539caf',
y1_label='Check outs',
y2_data=daily_data['windspeed'],
y2_color='#7663b0',
y2_label='Normalized windspeed',
title='Check Outs and Windspeed Over Time')
灰度图
# 绘制灰度图的函数
def histogram(data, x_label, y_label, title):
_, ax = plt.subplots()
# 设置bin的数量
ax.hist(data, color='#539caf', bins=10)
ax.set_ylabel(y_label)
ax.set_xlabel(x_label)
ax.set_title(title)
# 绘图函数调用
histogram(data=daily_data['registered'],
x_label='Check outs',
y_label='Frequency',
title='Distribution of Registered Check Outs')
堆叠直方图
# 绘制堆叠的直方图
def overlaid_historgram(data1, data1_name, data1_color, data2, data2_name, data2_color, x_label, y_label, title):
# 归一化数据区间,对齐两个直方图的bins
max_nbins = 10
data_range = [min(min(data1), min(data2)), max(max(data1), max(data2))]
binwidth = (data_range[1] - data_range[0]) / max_nbins
bins = np.arange(data_range[0], data_range[1] + binwidth, binwidth)
# 创建绘图对象
_, ax = plt.subplots()
ax.hist(data1, bins=bins, color=data1_color, alpha=1, label=data1_name)
ax.hist(data2, bins=bins, color=data2_color, alpha=0.75, label=data2_name)
ax.set_ylabel(y_label)
ax.set_xlabel(x_label)
ax.set_title(title)
ax.legend(loc='best')
# 绘图函数调用
overlaid_historgram(data1=daily_data['registered'],
data1_name='Registered',
data1_color='#539caf',
data2=daily_data['casual'],
data2_name='Casual',
data2_color='#7663b0',
x_label='Check outs',
y_label='Frequency',
title='Distribution of Check Outs By Type')
密度估计曲线
# 计算概率密度
from scipy.stats import gaussian_kde
data = daily_data['registered']
# kernal density estimate: https://en.wikipedia.org/wiki/Kernel_density_estimation
density_est = gaussian_kde(data)
# 控制平滑程度,数值越大,越平滑
density_est.covariance_factor = lambda: .3
density_est._compute_covariance()
x_data = np.arange(min(data), max(data), 200)
# 绘制密度估计曲线
def densityplot(x_data, density_est, x_label, y_label, title):
_, ax = plt.subplots()
ax.plot(x_data, density_est(x_data), color='#539caf', lw=2)
ax.set_ylabel(y_label)
ax.set_xlabel(x_label)
ax.set_title(title)
# 调用绘图函数
densityplot(x_data=x_data,
density_est=density_est,
x_label='Check outs',
y_label='Frequency',
title='Distribution of Registered Check Outs')
柱状图
# 分天分析统计特征
mean_total_co_day = daily_data[['weekday', 'cnt']].groupby('weekday').agg([np.mean, np.std])
mean_total_co_day.columns = mean_total_co_day.columns.droplevel()
# 定义绘制柱状图的函数
def barplot(x_data, y_data, error_data, x_label, y_label, title):
_, ax = plt.subplots()
# 柱状图
ax.bar(x_data, y_data, color='#539caf', align='center')
# 绘制方差
# ls='none'去掉bar之间的连线 ax.errorbar(x_data, y_data, yerr=error_data, color='#297083', ls='none', lw=5)
ax.set_ylabel(y_label)
ax.set_xlabel(x_label)
ax.set_title(title)
# 绘图函数调用
barplot(x_data=mean_total_co_day.index.values,
y_data=mean_total_co_day['mean'],
error_data=mean_total_co_day['std'],
x_label='Day of week',
y_label='Check outs',
title='Total Check Outs By Day Of Week (0 = Sunday)')
堆积柱状图
# 分天统计注册和偶然使用的情况
mean_by_reg_co_day = daily_data[['weekday', 'registered', 'casual']].groupby('weekday').mean()
# 分天统计注册和偶然使用的占比
mean_by_reg_co_day['total'] = mean_by_reg_co_day['registered'] + mean_by_reg_co_day['casual']
mean_by_reg_co_day['reg_prop'] = mean_by_reg_co_day['registered'] / mean_by_reg_co_day['total']
mean_by_reg_co_day['casual_prop'] = mean_by_reg_co_day['casual'] / mean_by_reg_co_day['total']
# 绘制堆积柱状图
def stackedbarplot(x_data, y_data_list, y_data_names, colors, x_label, y_label, title):
_, ax = plt.subplots()
# 循环绘制堆积柱状图
for i in range(0, len(y_data_list)):
if i == 0:
ax.bar(x_data, y_data_list[i], color=colors[i], align='center', label=y_data_names[i])
else:
# 采用堆积的方式,除了第一个分类,后面的分类都从前一个分类的柱状图接着画
# 用归一化保证最终累积结果为1 ax.bar(x_data, y_data_list[i], color=colors[i], bottom=y_data_list[i-1], align='center', label=y_data_names[i])
ax.set_ylabel(y_label)
ax.set_xlabel(x_label)
ax.set_title(title)
# 设定图例位置
ax.legend(loc='upper right')
# 调用绘图函数
stackedbarplot(x_data=mean_by_reg_co_day.index.values,
y_data_list=[mean_by_reg_co_day['reg_prop'], mean_by_reg_co_day['casual_prop']],
y_data_names=['Registered', 'Casual'],
colors=['#539caf', '#7663b0'],
x_label='Day of week',
y_label='Proportion of check outs',
title='Check Outs By Registration Status and Day of Week (0 = Sunday)')
分组柱状图
# 分天统计注册和偶然使用的情况
mean_by_reg_co_day = daily_data[['weekday', 'registered', 'casual']].groupby('weekday').mean()
# 分天统计注册和偶然使用的占比
mean_by_reg_co_day['total'] = mean_by_reg_co_day['registered'] + mean_by_reg_co_day['casual']
mean_by_reg_co_day['reg_prop'] = mean_by_reg_co_day['registered'] / mean_by_reg_co_day['total']
mean_by_reg_co_day['casual_prop'] = mean_by_reg_co_day['casual'] / mean_by_reg_co_day['total']
# 绘制分组柱状图的函数
def groupedbarplot(x_data, y_data_list, y_data_names, colors, x_label, y_label, title):
_, ax = plt.subplots()
# 设置每一组柱状图的宽度
total_width = 0.8
# 设置每一个柱状图的宽度
ind_width = total_width / len(y_data_list)
# 计算每一个柱状图的中心偏移
alteration = np.arange(-total_width/2+ind_width/2, total_width/2+ind_width/2, ind_width)
# 分别绘制每一个柱状图
for i in range(0, len(y_data_list)):
# 横向散开绘制
ax.bar(x_data + alteration[i], y_data_list[i], color=colors[i], label=y_data_names[i], width=ind_width)
ax.set_ylabel(y_label)
ax.set_xlabel(x_label)
ax.set_title(title)
ax.legend(loc='upper right')
# 调用绘图函数
groupedbarplot(x_data=mean_by_reg_co_day.index.values,
y_data_list=[mean_by_reg_co_day['registered'], mean_by_reg_co_day['casual']],
y_data_names=['Registered', 'Casual'],
colors=['#539caf', '#7663b0'],
x_label='Day of week',
y_label='Check outs',
title='Check Outs By Registration Status and Day of Week (0 = Sunday)')
箱式图
# 只需要指定分类的依据,就能自动绘制箱式图
days = np.unique(daily_data['weekday'])
bp_data = []
for day in days:
bp_data.append(daily_data[daily_data['weekday'] == day]['cnt'].values)
# 定义绘图函数
def boxplot(x_data, y_data, base_color, median_color, x_label, y_label, title):
_, ax = plt.subplots()
# 设置样式
ax.boxplot(y_data,
# 箱子是否颜色填充
patch_artist=True,
# 中位数线颜色
medianprops={'color': base_color},
# 箱子颜色设置,color:边框颜色,facecolor:填充颜色
boxprops={'color': base_color, 'facecolor': median_color},
# 猫须颜色whisker
whiskerprops={'color': median_color},
# 猫须界限颜色whisker cap
capprops={'color': base_color})
# 箱图与x_data保持一致
ax.set_xticklabels(x_data)
ax.set_ylabel(y_label)
ax.set_xlabel(x_label)
ax.set_title(title)
# 调用绘图函数
boxplot(x_data=days,
y_data=bp_data,
base_color='b',
median_color='r',
x_label='Day of week',
y_label='Check outs',
title='Total Check Outs By Day of Week (0 = Sunday)')
来源
@ 寒小阳
欢迎来到这里!
我们正在构建一个小众社区,大家在这里相互信任,以平等 • 自由 • 奔放的价值观进行分享交流。最终,希望大家能够找到与自己志同道合的伙伴,共同成长。
注册 关于