常用的几种大数据架构剖析

本贴最后更新于 2151 天前,其中的信息可能已经水流花落

数据分析工作虽然隐藏在业务系统背后,但是具有非常重要的作用,数据分析的结果对决策、业务发展有着举足轻重的作用。随着大数据技术的发展,数据挖掘、数据探索等专有名词曝光度越来越高,但是在类似于 Hadoop 系列的大数据分析系统大行其道之前,数据分析工作已经经历了长足的发展,尤其是以 BI 系统为主的数据分析,已经有了非常成熟和稳定的技术方案和生态系统,对于 BI 系统来说,大概的架构图如下:

可以看到在 BI 系统里面,核心的模块是 Cube,Cube 是一个更高层的业务模型抽象,在 Cube 之上可以进行多种操作,例如上钻、下钻、切片等操作。大部分 BI 系统都基于关系型数据库,关系型数据库使用 SQL 语句进行操作,但是 SQL 在多维操作和分析的表示能力上相对较弱,所以 Cube 有自己独有的查询语言 MDX,MDX 表达式具有更强的多维表现能力,所以以 Cube 为核心的分析系统基本占据着数据统计分析的半壁江山,大多数的数据库服务厂商直接提供了 BI 套装软件服务,轻易便可搭建出一套 Olap 分析系统。不过 BI 的问题也随着时间的推移逐渐显露出来:

  • BI 系统更多的以分析业务数据产生的密度高、价值高的结构化数据为主,对于非结构化和半结构化数据的处理非常乏力,例如图片,文本,音频的存储,分析。
  • 由于数据仓库为结构化存储,在数据从其他系统进入数据仓库这个东西,我们通常叫做 ETL 过程,ETL 动作和业务进行了强绑定,通常需要一个专门的 ETL 团队去和业务做衔接,决定如何进行数据的清洗和转换。
  • 随着异构数据源的增加,例如如果存在视频,文本,图片等数据源,要解析数据内容进入数据仓库,则需要非常复杂等 ETL 程序,从而导致 ETL 变得过于庞大和臃肿。
  • 当数据量过大的时候,性能会成为瓶颈,在 TB/PB 级别的数据量上表现出明显的吃力。
  • 数据库的范式等约束规则,着力于解决数据冗余的问题,是为了保障数据的一致性,但是对于数据仓库来说,我们并不需要对数据做修改和一致性的保障,原则上来说数据仓库的原始数据都是只读的,所以这些约束反而会成为影响性能的因素。
  • ETL 动作对数据的预先假设和处理,导致机器学习部分获取到的数据为假设后的数据,因此效果不理想。例如如果需要使用数据仓库进行异常数据的挖掘,则在数据入库经过 ETL 的时候就需要明确定义需要提取的特征数据,否则无法结构化入库,然而大多数情况是需要基于异构数据才能提取出特征。

在一系列的问题下,以 Hadoop 体系为首的大数据分析平台逐渐表现出优异性,围绕 Hadoop 体系的生态圈也不断的变大,对于 Hadoop 系统来说,从根本上解决了传统数据仓库的瓶颈的问题,但是也带来一系列的问题:

  • 从数据仓库升级到大数据架构,是不具备平滑演进的,基本等于推翻重做。
  • 大数据下的分布式存储强调数据的只读性质,所以类似于 Hive,HDFS 这些存储方式都不支持 update,HDFS 的 write 操作也不支持并行,这些特性导致其具有一定的局限性。

基于大数据架构的数据分析平台侧重于从以下几个维度去解决传统数据仓库做数据分析面临的瓶颈:

  • 分布式计算:分布式计算的思路是让多个节点并行计算,并且强调数据本地性,尽可能的减少数据的传输,例如 Spark 通过 RDD 的形式来表现数据的计算逻辑,可以在 RDD 上做一系列的优化,来减少数据的传输。
  • 分布式存储:所谓的分布式存储,指的是将一个大文件拆成 N 份,每一份独立的放到一台机器上,这里就涉及到文件的副本,分片,以及管理等操作,分布式存储主要优化的动作都在这一块。
  • 检索和存储的结合:在早期的大数据组件中,存储和计算相对比较单一,但是目前更多的方向是在存储上做更多的手脚,让查询和计算更加高效,对于计算来说高效不外乎就是查找数据快,读取数据快,所以目前的存储不单单的存储数据内容,同时会添加很多元信息,例如索引信息。像类似于 parquet 和 carbondata 都是这样的思想。

总的来说,目前围绕 Hadoop 体系的大数据架构大概有以下几种:

传统大数据架构

​之所以叫传统大数据架构,是因为其定位是为了解决传统 BI 的问题,简单来说,数据分析的业务没有发生任何变化,但是因为数据量、性能等问题导致系统无法正常使用,需要进行升级改造,那么此类架构便是为了解决这个问题。可以看到,其依然保留了 ETL 的动作,将数据经过 ETL 动作进入数据存储。

优点:简单,易懂,对于 BI 系统来说,基本思想没有发生变化,变化的仅仅是技术选型,用大数据架构替换掉 BI 的组件。

缺点:对于大数据来说,没有 BI 下如此完备的 Cube 架构,虽然目前有 kylin,但是 kylin 的局限性非常明显,远远没有 BI 下的 Cube 的灵活度和稳定度,因此对业务支撑的灵活度不够,所以对于存在大量报表,或者复杂的钻取的场景,需要太多的手工定制化,同时该架构依旧以批处理为主,缺乏实时的支撑。

适用场景:数据分析需求依旧以 BI 场景为主,但是因为数据量、性能等问题无法满足日常使用。

流式架构

在传统大数据架构的基础上,流式架构非常激进,直接拔掉了批处理,数据全程以流的形式处理,所以在数据接入端没有了 ETL,转而替换为数据通道。经过流处理加工后的数据,以消息的形式直接推送给了消费者。虽然有一个存储部分,但是该存储更多的以窗口的形式进行存储,所以该存储并非发生在数据湖,而是在外围系统。

优点:没有臃肿的 ETL 过程,数据的实效性非常高。

缺点:对于流式架构来说,不存在批处理,因此对于数据的重播和历史统计无法很好的支撑。对于离线分析仅仅支撑窗口之内的分析。

适用场景:预警,监控,对数据有有效期要求的情况。

Lambda 架构

Lambda 架构算是大数据系统里面举足轻重的架构,大多数架构基本都是 Lambda 架构或者基于其变种的架构。Lambda 的数据通道分为两条分支:实时流和离线。实时流依照流式架构,保障了其实时性,而离线则以批处理方式为主,保障了最终一致性。什么意思呢?流式通道处理为保障实效性更多的以增量计算为主辅助参考,而批处理层则对数据进行全量运算,保障其最终的一致性,因此 Lambda 最外层有一个实时层和离线层合并的动作,此动作是 Lambda 里非常重要的一个动作,大概的合并思路如下:

优点:既有实时又有离线,对于数据分析场景涵盖的非常到位。

缺点:离线层和实时流虽然面临的场景不相同,但是其内部处理的逻辑却是相同,因此有大量荣誉和重复的模块存在。

适用场景:同时存在实时和离线需求的情况。

Kappa 架构

​ Kappa 架构在 Lambda 的基础上进行了优化,将实时和流部分进行了合并,将数据通道以消息队列进行替代。因此对于 Kappa 架构来说,依旧以流处理为主,但是数据却在数据湖层面进行了存储,当需要进行离线分析或者再次计算的时候,则将数据湖的数据再次经过消息队列重播一次则可。

优点:Kappa 架构解决了 Lambda 架构里面的冗余部分,以数据可重播的超凡脱俗的思想进行了设计,整个架构非常简洁。

缺点:虽然 Kappa 架构看起来简洁,但是施难度相对较高,尤其是对于数据重播部分。

适用场景:和 Lambda 类似,改架构是针对 Lambda 的优化。

Unifield 架构

​以上的种种架构都围绕海量数据处理为主,Unifield 架构则更激进,将机器学习和数据处理揉为一体,从核心上来说,Unifield 依旧以 Lambda 为主,不过对其进行了改造,在流处理层新增了机器学习层。可以看到数据在经过数据通道进入数据湖后,新增了模型训练部分,并且将其在流式层进行使用。同时流式层不单使用模型,也包含着对模型的持续训练。

优点:Unifield 架构提供了一套数据分析和机器学习结合的架构方案,非常好的解决了机器学习如何与数据平台进行结合的问题。

缺点:Unifield 架构实施复杂度更高,对于机器学习架构来说,从软件包到硬件部署都和数据分析平台有着非常大的差别,因此在实施过程中的难度系数更高。

适用场景:有着大量数据需要分析,同时对机器学习方便又有着非常大的需求或者有规划。

总结

以上几种架构为目前数据处理领域使用比较多的几种架构,当然还有非常多其他架构,不过其思想都会或多或少的类似。数据领域和机器学习领域会持续发展,以上几种思想或许终究也会变得过时。

  • 架构

    我们平时所说的“架构”主要是指软件架构,这是有关软件整体结构与组件的抽象描述,用于指导软件系统各个方面的设计。另外还有“业务架构”、“网络架构”、“硬件架构”等细分领域。

    142 引用 • 442 回帖 • 1 关注
  • 数据
    9 引用 • 16 回帖

相关帖子

欢迎来到这里!

我们正在构建一个小众社区,大家在这里相互信任,以平等 • 自由 • 奔放的价值观进行分享交流。最终,希望大家能够找到与自己志同道合的伙伴,共同成长。

注册 关于
请输入回帖内容 ...

推荐标签 标签

  • Ubuntu

    Ubuntu(友帮拓、优般图、乌班图)是一个以桌面应用为主的 Linux 操作系统,其名称来自非洲南部祖鲁语或豪萨语的“ubuntu”一词,意思是“人性”、“我的存在是因为大家的存在”,是非洲传统的一种价值观,类似华人社会的“仁爱”思想。Ubuntu 的目标在于为一般用户提供一个最新的、同时又相当稳定的主要由自由软件构建而成的操作系统。

    126 引用 • 169 回帖
  • Thymeleaf

    Thymeleaf 是一款用于渲染 XML/XHTML/HTML5 内容的模板引擎。类似 Velocity、 FreeMarker 等,它也可以轻易的与 Spring 等 Web 框架进行集成作为 Web 应用的模板引擎。与其它模板引擎相比,Thymeleaf 最大的特点是能够直接在浏览器中打开并正确显示模板页面,而不需要启动整个 Web 应用。

    11 引用 • 19 回帖 • 364 关注
  • SendCloud

    SendCloud 由搜狐武汉研发中心孵化的项目,是致力于为开发者提供高质量的触发邮件服务的云端邮件发送平台,为开发者提供便利的 API 接口来调用服务,让邮件准确迅速到达用户收件箱并获得强大的追踪数据。

    2 引用 • 8 回帖 • 486 关注
  • 导航

    各种网址链接、内容导航。

    42 引用 • 175 回帖
  • CentOS

    CentOS(Community Enterprise Operating System)是 Linux 发行版之一,它是来自于 Red Hat Enterprise Linux 依照开放源代码规定释出的源代码所编译而成。由于出自同样的源代码,因此有些要求高度稳定的服务器以 CentOS 替代商业版的 Red Hat Enterprise Linux 使用。两者的不同在于 CentOS 并不包含封闭源代码软件。

    238 引用 • 224 回帖
  • Hprose

    Hprose 是一款先进的轻量级、跨语言、跨平台、无侵入式、高性能动态远程对象调用引擎库。它不仅简单易用,而且功能强大。你无需专门学习,只需看上几眼,就能用它轻松构建分布式应用系统。

    9 引用 • 17 回帖 • 612 关注
  • 微软

    微软是一家美国跨国科技公司,也是世界 PC 软件开发的先导,由比尔·盖茨与保罗·艾伦创办于 1975 年,公司总部设立在华盛顿州的雷德蒙德(Redmond,邻近西雅图)。以研发、制造、授权和提供广泛的电脑软件服务业务为主。

    8 引用 • 44 回帖 • 1 关注
  • 星云链

    星云链是一个开源公链,业内简单的将其称为区块链上的谷歌。其实它不仅仅是区块链搜索引擎,一个公链的所有功能,它基本都有,比如你可以用它来开发部署你的去中心化的 APP,你可以在上面编写智能合约,发送交易等等。3 分钟快速接入星云链 (NAS) 测试网

    3 引用 • 16 回帖 • 6 关注
  • LeetCode

    LeetCode(力扣)是一个全球极客挚爱的高质量技术成长平台,想要学习和提升专业能力从这里开始,充足技术干货等你来啃,轻松拿下 Dream Offer!

    209 引用 • 72 回帖
  • OpenShift

    红帽提供的 PaaS 云,支持多种编程语言,为开发人员提供了更为灵活的框架、存储选择。

    14 引用 • 20 回帖 • 632 关注
  • 开源

    Open Source, Open Mind, Open Sight, Open Future!

    407 引用 • 3578 回帖 • 1 关注
  • Ruby

    Ruby 是一种开源的面向对象程序设计的服务器端脚本语言,在 20 世纪 90 年代中期由日本的松本行弘(まつもとゆきひろ/Yukihiro Matsumoto)设计并开发。在 Ruby 社区,松本也被称为马茨(Matz)。

    7 引用 • 31 回帖 • 216 关注
  • OAuth

    OAuth 协议为用户资源的授权提供了一个安全的、开放而又简易的标准。与以往的授权方式不同之处是 oAuth 的授权不会使第三方触及到用户的帐号信息(如用户名与密码),即第三方无需使用用户的用户名与密码就可以申请获得该用户资源的授权,因此 oAuth 是安全的。oAuth 是 Open Authorization 的简写。

    36 引用 • 103 回帖 • 17 关注
  • JSON

    JSON (JavaScript Object Notation)是一种轻量级的数据交换格式。易于人类阅读和编写。同时也易于机器解析和生成。

    52 引用 • 190 回帖
  • 国际化

    i18n(其来源是英文单词 internationalization 的首末字符 i 和 n,18 为中间的字符数)是“国际化”的简称。对程序来说,国际化是指在不修改代码的情况下,能根据不同语言及地区显示相应的界面。

    8 引用 • 26 回帖 • 1 关注
  • PostgreSQL

    PostgreSQL 是一款功能强大的企业级数据库系统,在 BSD 开源许可证下发布。

    22 引用 • 22 回帖 • 1 关注
  • TGIF

    Thank God It's Friday! 感谢老天,总算到星期五啦!

    288 引用 • 4485 回帖 • 663 关注
  • 宕机

    宕机,多指一些网站、游戏、网络应用等服务器一种区别于正常运行的状态,也叫“Down 机”、“当机”或“死机”。宕机状态不仅仅是指服务器“挂掉了”、“死机了”状态,也包括服务器假死、停用、关闭等一些原因而导致出现的不能够正常运行的状态。

    13 引用 • 82 回帖 • 59 关注
  • 友情链接

    确认过眼神后的灵魂连接,站在链在!

    24 引用 • 373 回帖
  • WebClipper

    Web Clipper 是一款浏览器剪藏扩展,它可以帮助你把网页内容剪藏到本地。

    3 引用 • 9 回帖 • 4 关注
  • etcd

    etcd 是一个分布式、高可用的 key-value 数据存储,专门用于在分布式系统中保存关键数据。

    5 引用 • 26 回帖 • 528 关注
  • 服务器

    服务器,也称伺服器,是提供计算服务的设备。由于服务器需要响应服务请求,并进行处理,因此一般来说服务器应具备承担服务并且保障服务的能力。

    125 引用 • 588 回帖
  • C++

    C++ 是在 C 语言的基础上开发的一种通用编程语言,应用广泛。C++ 支持多种编程范式,面向对象编程、泛型编程和过程化编程。

    107 引用 • 153 回帖
  • 创业

    你比 99% 的人都优秀么?

    85 引用 • 1399 回帖 • 1 关注
  • JWT

    JWT(JSON Web Token)是一种用于双方之间传递信息的简洁的、安全的表述性声明规范。JWT 作为一个开放的标准(RFC 7519),定义了一种简洁的,自包含的方法用于通信双方之间以 JSON 的形式安全的传递信息。

    20 引用 • 15 回帖 • 6 关注
  • 架构

    我们平时所说的“架构”主要是指软件架构,这是有关软件整体结构与组件的抽象描述,用于指导软件系统各个方面的设计。另外还有“业务架构”、“网络架构”、“硬件架构”等细分领域。

    142 引用 • 442 回帖 • 1 关注
  • 强迫症

    强迫症(OCD)属于焦虑障碍的一种类型,是一组以强迫思维和强迫行为为主要临床表现的神经精神疾病,其特点为有意识的强迫和反强迫并存,一些毫无意义、甚至违背自己意愿的想法或冲动反反复复侵入患者的日常生活。

    15 引用 • 161 回帖 • 2 关注