常用的几种大数据架构剖析

本贴最后更新于 2257 天前,其中的信息可能已经水流花落

数据分析工作虽然隐藏在业务系统背后,但是具有非常重要的作用,数据分析的结果对决策、业务发展有着举足轻重的作用。随着大数据技术的发展,数据挖掘、数据探索等专有名词曝光度越来越高,但是在类似于 Hadoop 系列的大数据分析系统大行其道之前,数据分析工作已经经历了长足的发展,尤其是以 BI 系统为主的数据分析,已经有了非常成熟和稳定的技术方案和生态系统,对于 BI 系统来说,大概的架构图如下:

可以看到在 BI 系统里面,核心的模块是 Cube,Cube 是一个更高层的业务模型抽象,在 Cube 之上可以进行多种操作,例如上钻、下钻、切片等操作。大部分 BI 系统都基于关系型数据库,关系型数据库使用 SQL 语句进行操作,但是 SQL 在多维操作和分析的表示能力上相对较弱,所以 Cube 有自己独有的查询语言 MDX,MDX 表达式具有更强的多维表现能力,所以以 Cube 为核心的分析系统基本占据着数据统计分析的半壁江山,大多数的数据库服务厂商直接提供了 BI 套装软件服务,轻易便可搭建出一套 Olap 分析系统。不过 BI 的问题也随着时间的推移逐渐显露出来:

  • BI 系统更多的以分析业务数据产生的密度高、价值高的结构化数据为主,对于非结构化和半结构化数据的处理非常乏力,例如图片,文本,音频的存储,分析。
  • 由于数据仓库为结构化存储,在数据从其他系统进入数据仓库这个东西,我们通常叫做 ETL 过程,ETL 动作和业务进行了强绑定,通常需要一个专门的 ETL 团队去和业务做衔接,决定如何进行数据的清洗和转换。
  • 随着异构数据源的增加,例如如果存在视频,文本,图片等数据源,要解析数据内容进入数据仓库,则需要非常复杂等 ETL 程序,从而导致 ETL 变得过于庞大和臃肿。
  • 当数据量过大的时候,性能会成为瓶颈,在 TB/PB 级别的数据量上表现出明显的吃力。
  • 数据库的范式等约束规则,着力于解决数据冗余的问题,是为了保障数据的一致性,但是对于数据仓库来说,我们并不需要对数据做修改和一致性的保障,原则上来说数据仓库的原始数据都是只读的,所以这些约束反而会成为影响性能的因素。
  • ETL 动作对数据的预先假设和处理,导致机器学习部分获取到的数据为假设后的数据,因此效果不理想。例如如果需要使用数据仓库进行异常数据的挖掘,则在数据入库经过 ETL 的时候就需要明确定义需要提取的特征数据,否则无法结构化入库,然而大多数情况是需要基于异构数据才能提取出特征。

在一系列的问题下,以 Hadoop 体系为首的大数据分析平台逐渐表现出优异性,围绕 Hadoop 体系的生态圈也不断的变大,对于 Hadoop 系统来说,从根本上解决了传统数据仓库的瓶颈的问题,但是也带来一系列的问题:

  • 从数据仓库升级到大数据架构,是不具备平滑演进的,基本等于推翻重做。
  • 大数据下的分布式存储强调数据的只读性质,所以类似于 Hive,HDFS 这些存储方式都不支持 update,HDFS 的 write 操作也不支持并行,这些特性导致其具有一定的局限性。

基于大数据架构的数据分析平台侧重于从以下几个维度去解决传统数据仓库做数据分析面临的瓶颈:

  • 分布式计算:分布式计算的思路是让多个节点并行计算,并且强调数据本地性,尽可能的减少数据的传输,例如 Spark 通过 RDD 的形式来表现数据的计算逻辑,可以在 RDD 上做一系列的优化,来减少数据的传输。
  • 分布式存储:所谓的分布式存储,指的是将一个大文件拆成 N 份,每一份独立的放到一台机器上,这里就涉及到文件的副本,分片,以及管理等操作,分布式存储主要优化的动作都在这一块。
  • 检索和存储的结合:在早期的大数据组件中,存储和计算相对比较单一,但是目前更多的方向是在存储上做更多的手脚,让查询和计算更加高效,对于计算来说高效不外乎就是查找数据快,读取数据快,所以目前的存储不单单的存储数据内容,同时会添加很多元信息,例如索引信息。像类似于 parquet 和 carbondata 都是这样的思想。

总的来说,目前围绕 Hadoop 体系的大数据架构大概有以下几种:

传统大数据架构

​之所以叫传统大数据架构,是因为其定位是为了解决传统 BI 的问题,简单来说,数据分析的业务没有发生任何变化,但是因为数据量、性能等问题导致系统无法正常使用,需要进行升级改造,那么此类架构便是为了解决这个问题。可以看到,其依然保留了 ETL 的动作,将数据经过 ETL 动作进入数据存储。

优点:简单,易懂,对于 BI 系统来说,基本思想没有发生变化,变化的仅仅是技术选型,用大数据架构替换掉 BI 的组件。

缺点:对于大数据来说,没有 BI 下如此完备的 Cube 架构,虽然目前有 kylin,但是 kylin 的局限性非常明显,远远没有 BI 下的 Cube 的灵活度和稳定度,因此对业务支撑的灵活度不够,所以对于存在大量报表,或者复杂的钻取的场景,需要太多的手工定制化,同时该架构依旧以批处理为主,缺乏实时的支撑。

适用场景:数据分析需求依旧以 BI 场景为主,但是因为数据量、性能等问题无法满足日常使用。

流式架构

在传统大数据架构的基础上,流式架构非常激进,直接拔掉了批处理,数据全程以流的形式处理,所以在数据接入端没有了 ETL,转而替换为数据通道。经过流处理加工后的数据,以消息的形式直接推送给了消费者。虽然有一个存储部分,但是该存储更多的以窗口的形式进行存储,所以该存储并非发生在数据湖,而是在外围系统。

优点:没有臃肿的 ETL 过程,数据的实效性非常高。

缺点:对于流式架构来说,不存在批处理,因此对于数据的重播和历史统计无法很好的支撑。对于离线分析仅仅支撑窗口之内的分析。

适用场景:预警,监控,对数据有有效期要求的情况。

Lambda 架构

Lambda 架构算是大数据系统里面举足轻重的架构,大多数架构基本都是 Lambda 架构或者基于其变种的架构。Lambda 的数据通道分为两条分支:实时流和离线。实时流依照流式架构,保障了其实时性,而离线则以批处理方式为主,保障了最终一致性。什么意思呢?流式通道处理为保障实效性更多的以增量计算为主辅助参考,而批处理层则对数据进行全量运算,保障其最终的一致性,因此 Lambda 最外层有一个实时层和离线层合并的动作,此动作是 Lambda 里非常重要的一个动作,大概的合并思路如下:

优点:既有实时又有离线,对于数据分析场景涵盖的非常到位。

缺点:离线层和实时流虽然面临的场景不相同,但是其内部处理的逻辑却是相同,因此有大量荣誉和重复的模块存在。

适用场景:同时存在实时和离线需求的情况。

Kappa 架构

​ Kappa 架构在 Lambda 的基础上进行了优化,将实时和流部分进行了合并,将数据通道以消息队列进行替代。因此对于 Kappa 架构来说,依旧以流处理为主,但是数据却在数据湖层面进行了存储,当需要进行离线分析或者再次计算的时候,则将数据湖的数据再次经过消息队列重播一次则可。

优点:Kappa 架构解决了 Lambda 架构里面的冗余部分,以数据可重播的超凡脱俗的思想进行了设计,整个架构非常简洁。

缺点:虽然 Kappa 架构看起来简洁,但是施难度相对较高,尤其是对于数据重播部分。

适用场景:和 Lambda 类似,改架构是针对 Lambda 的优化。

Unifield 架构

​以上的种种架构都围绕海量数据处理为主,Unifield 架构则更激进,将机器学习和数据处理揉为一体,从核心上来说,Unifield 依旧以 Lambda 为主,不过对其进行了改造,在流处理层新增了机器学习层。可以看到数据在经过数据通道进入数据湖后,新增了模型训练部分,并且将其在流式层进行使用。同时流式层不单使用模型,也包含着对模型的持续训练。

优点:Unifield 架构提供了一套数据分析和机器学习结合的架构方案,非常好的解决了机器学习如何与数据平台进行结合的问题。

缺点:Unifield 架构实施复杂度更高,对于机器学习架构来说,从软件包到硬件部署都和数据分析平台有着非常大的差别,因此在实施过程中的难度系数更高。

适用场景:有着大量数据需要分析,同时对机器学习方便又有着非常大的需求或者有规划。

总结

以上几种架构为目前数据处理领域使用比较多的几种架构,当然还有非常多其他架构,不过其思想都会或多或少的类似。数据领域和机器学习领域会持续发展,以上几种思想或许终究也会变得过时。

  • 架构

    我们平时所说的“架构”主要是指软件架构,这是有关软件整体结构与组件的抽象描述,用于指导软件系统各个方面的设计。另外还有“业务架构”、“网络架构”、“硬件架构”等细分领域。

    143 引用 • 442 回帖
  • 数据
    9 引用 • 16 回帖

相关帖子

欢迎来到这里!

我们正在构建一个小众社区,大家在这里相互信任,以平等 • 自由 • 奔放的价值观进行分享交流。最终,希望大家能够找到与自己志同道合的伙伴,共同成长。

注册 关于
请输入回帖内容 ...

推荐标签 标签

  • Flume

    Flume 是一套分布式的、可靠的,可用于有效地收集、聚合和搬运大量日志数据的服务架构。

    9 引用 • 6 回帖 • 652 关注
  • 一些有用的避坑指南。

    69 引用 • 93 回帖
  • CAP

    CAP 指的是在一个分布式系统中, Consistency(一致性)、 Availability(可用性)、Partition tolerance(分区容错性),三者不可兼得。

    12 引用 • 5 回帖 • 640 关注
  • 强迫症

    强迫症(OCD)属于焦虑障碍的一种类型,是一组以强迫思维和强迫行为为主要临床表现的神经精神疾病,其特点为有意识的强迫和反强迫并存,一些毫无意义、甚至违背自己意愿的想法或冲动反反复复侵入患者的日常生活。

    15 引用 • 161 回帖 • 3 关注
  • OpenStack

    OpenStack 是一个云操作系统,通过数据中心可控制大型的计算、存储、网络等资源池。所有的管理通过前端界面管理员就可以完成,同样也可以通过 Web 接口让最终用户部署资源。

    10 引用 • 2 关注
  • NGINX

    NGINX 是一个高性能的 HTTP 和反向代理服务器,也是一个 IMAP/POP3/SMTP 代理服务器。 NGINX 是由 Igor Sysoev 为俄罗斯访问量第二的 Rambler.ru 站点开发的,第一个公开版本 0.1.0 发布于 2004 年 10 月 4 日。

    315 引用 • 547 回帖
  • 钉钉

    钉钉,专为中国企业打造的免费沟通协同多端平台, 阿里巴巴出品。

    15 引用 • 67 回帖 • 297 关注
  • Latke

    Latke 是一款以 JSON 为主的 Java Web 框架。

    71 引用 • 535 回帖 • 824 关注
  • 服务

    提供一个服务绝不仅仅是简单的把硬件和软件累加在一起,它包括了服务的可靠性、服务的标准化、以及对服务的监控、维护、技术支持等。

    41 引用 • 24 回帖 • 3 关注
  • Eclipse

    Eclipse 是一个开放源代码的、基于 Java 的可扩展开发平台。就其本身而言,它只是一个框架和一组服务,用于通过插件组件构建开发环境。

    76 引用 • 258 回帖 • 631 关注
  • Follow
    4 引用 • 12 回帖 • 11 关注
  • GAE

    Google App Engine(GAE)是 Google 管理的数据中心中用于 WEB 应用程序的开发和托管的平台。2008 年 4 月 发布第一个测试版本。目前支持 Python、Java 和 Go 开发部署。全球已有数十万的开发者在其上开发了众多的应用。

    14 引用 • 42 回帖 • 809 关注
  • AngularJS

    AngularJS 诞生于 2009 年,由 Misko Hevery 等人创建,后为 Google 所收购。是一款优秀的前端 JS 框架,已经被用于 Google 的多款产品当中。AngularJS 有着诸多特性,最为核心的是:MVC、模块化、自动化双向数据绑定、语义化标签、依赖注入等。2.0 版本后已经改名为 Angular。

    12 引用 • 50 回帖 • 504 关注
  • 域名

    域名(Domain Name),简称域名、网域,是由一串用点分隔的名字组成的 Internet 上某一台计算机或计算机组的名称,用于在数据传输时标识计算机的电子方位(有时也指地理位置)。

    43 引用 • 208 回帖
  • Kafka

    Kafka 是一种高吞吐量的分布式发布订阅消息系统,它可以处理消费者规模的网站中的所有动作流数据。 这种动作(网页浏览,搜索和其他用户的行动)是现代系统中许多功能的基础。 这些数据通常是由于吞吐量的要求而通过处理日志和日志聚合来解决。

    36 引用 • 35 回帖 • 2 关注
  • Git

    Git 是 Linux Torvalds 为了帮助管理 Linux 内核开发而开发的一个开放源码的版本控制软件。

    211 引用 • 358 回帖
  • PHP

    PHP(Hypertext Preprocessor)是一种开源脚本语言。语法吸收了 C 语言、 Java 和 Perl 的特点,主要适用于 Web 开发领域,据说是世界上最好的编程语言。

    179 引用 • 408 回帖 • 486 关注
  • 持续集成

    持续集成(Continuous Integration)是一种软件开发实践,即团队开发成员经常集成他们的工作,通过每个成员每天至少集成一次,也就意味着每天可能会发生多次集成。每次集成都通过自动化的构建(包括编译,发布,自动化测试)来验证,从而尽早地发现集成错误。

    15 引用 • 7 回帖
  • Mac

    Mac 是苹果公司自 1984 年起以“Macintosh”开始开发的个人消费型计算机,如:iMac、Mac mini、Macbook Air、Macbook Pro、Macbook、Mac Pro 等计算机。

    169 引用 • 595 回帖
  • OkHttp

    OkHttp 是一款 HTTP & HTTP/2 客户端库,专为 Android 和 Java 应用打造。

    16 引用 • 6 回帖 • 83 关注
  • WiFiDog

    WiFiDog 是一套开源的无线热点认证管理工具,主要功能包括:位置相关的内容递送;用户认证和授权;集中式网络监控。

    1 引用 • 7 回帖 • 611 关注
  • SOHO

    为成为自由职业者在家办公而努力吧!

    7 引用 • 55 回帖 • 4 关注
  • Wide

    Wide 是一款基于 Web 的 Go 语言 IDE。通过浏览器就可以进行 Go 开发,并有代码自动完成、查看表达式、编译反馈、Lint、实时结果输出等功能。

    欢迎访问我们运维的实例: https://wide.b3log.org

    30 引用 • 218 回帖 • 643 关注
  • 外包

    有空闲时间是接外包好呢还是学习好呢?

    26 引用 • 233 回帖 • 3 关注
  • MongoDB

    MongoDB(来自于英文单词“Humongous”,中文含义为“庞大”)是一个基于分布式文件存储的数据库,由 C++ 语言编写。旨在为应用提供可扩展的高性能数据存储解决方案。MongoDB 是一个介于关系数据库和非关系数据库之间的产品,是非关系数据库当中功能最丰富,最像关系数据库的。它支持的数据结构非常松散,是类似 JSON 的 BSON 格式,因此可以存储比较复杂的数据类型。

    90 引用 • 59 回帖 • 7 关注
  • Ubuntu

    Ubuntu(友帮拓、优般图、乌班图)是一个以桌面应用为主的 Linux 操作系统,其名称来自非洲南部祖鲁语或豪萨语的“ubuntu”一词,意思是“人性”、“我的存在是因为大家的存在”,是非洲传统的一种价值观,类似华人社会的“仁爱”思想。Ubuntu 的目标在于为一般用户提供一个最新的、同时又相当稳定的主要由自由软件构建而成的操作系统。

    127 引用 • 169 回帖
  • Maven

    Maven 是基于项目对象模型(POM)、通过一小段描述信息来管理项目的构建、报告和文档的软件项目管理工具。

    186 引用 • 318 回帖 • 255 关注