记录学习 Spark 过程遇到的一个问题

本贴最后更新于 2254 天前,其中的信息可能已经时移世改

Exception in thread "main" java.lang.ArrayIndexOutOfBoundsException: 10582 at com.thoughtworks.paranamer.BytecodeReadingParanamer$ClassReader.accept(BytecodeReadingParanamer.java:563) at com.thoughtworks.paranamer.BytecodeReadingParanamer$ClassReader.access$200(BytecodeReadingParanamer.java:338) at com.thoughtworks.paranamer.BytecodeReadingParanamer.lookupParameterNames(BytecodeReadingParanamer.java:103) at com.thoughtworks.paranamer.CachingParanamer.lookupParameterNames(CachingParanamer.java:90) at com.fasterxml.jackson.module.scala.introspect.BeanIntrospector$.getCtorParams(BeanIntrospector.scala:44) at com.fasterxml.jackson.module.scala.introspect.BeanIntrospector$.$anonfun$apply$1(BeanIntrospector.scala:58) at com.fasterxml.jackson.module.scala.introspect.BeanIntrospector$.$anonfun$apply$1$adapted(BeanIntrospector.scala:58) at scala.collection.TraversableLike.$anonfun$flatMap$1(TraversableLike.scala:240) at scala.collection.Iterator.foreach(Iterator.scala:937) at scala.collection.Iterator.foreach$(Iterator.scala:937) at scala.collection.AbstractIterator.foreach(Iterator.scala:1425) at scala.collection.IterableLike.foreach(IterableLike.scala:70) at scala.collection.IterableLike.foreach$(IterableLike.scala:69) at scala.collection.AbstractIterable.foreach(Iterable.scala:54) at scala.collection.TraversableLike.flatMap(TraversableLike.scala:240) at scala.collection.TraversableLike.flatMap$(TraversableLike.scala:237) at scala.collection.AbstractTraversable.flatMap(Traversable.scala:104) at com.fasterxml.jackson.module.scala.introspect.BeanIntrospector$.findConstructorParam$1(BeanIntrospector.scala:58) at com.fasterxml.jackson.module.scala.introspect.BeanIntrospector$.$anonfun$apply$19(BeanIntrospector.scala:176) at scala.collection.TraversableLike.$anonfun$map$1(TraversableLike.scala:233) at scala.collection.IndexedSeqOptimized.foreach(IndexedSeqOptimized.scala:32) at scala.collection.IndexedSeqOptimized.foreach$(IndexedSeqOptimized.scala:29) at scala.collection.mutable.ArrayOps$ofRef.foreach(ArrayOps.scala:194) at scala.collection.TraversableLike.map(TraversableLike.scala:233) at scala.collection.TraversableLike.map$(TraversableLike.scala:226) at scala.collection.mutable.ArrayOps$ofRef.map(ArrayOps.scala:194) at com.fasterxml.jackson.module.scala.introspect.BeanIntrospector$.$anonfun$apply$14(BeanIntrospector.scala:170) at com.fasterxml.jackson.module.scala.introspect.BeanIntrospector$.$anonfun$apply$14$adapted(BeanIntrospector.scala:169) at scala.collection.TraversableLike.$anonfun$flatMap$1(TraversableLike.scala:240) at scala.collection.immutable.List.foreach(List.scala:388) at scala.collection.TraversableLike.flatMap(TraversableLike.scala:240) at scala.collection.TraversableLike.flatMap$(TraversableLike.scala:237) at scala.collection.immutable.List.flatMap(List.scala:351) at com.fasterxml.jackson.module.scala.introspect.BeanIntrospector$.apply(BeanIntrospector.scala:169) at com.fasterxml.jackson.module.scala.introspect.ScalaAnnotationIntrospector$._descriptorFor(ScalaAnnotationIntrospectorModule.scala:21) at com.fasterxml.jackson.module.scala.introspect.ScalaAnnotationIntrospector$.fieldName(ScalaAnnotationIntrospectorModule.scala:29) at com.fasterxml.jackson.module.scala.introspect.ScalaAnnotationIntrospector$.findImplicitPropertyName(ScalaAnnotationIntrospectorModule.scala:77) at com.fasterxml.jackson.databind.introspect.AnnotationIntrospectorPair.findImplicitPropertyName(AnnotationIntrospectorPair.java:490) at com.fasterxml.jackson.databind.introspect.POJOPropertiesCollector._addFields(POJOPropertiesCollector.java:380) at com.fasterxml.jackson.databind.introspect.POJOPropertiesCollector.collectAll(POJOPropertiesCollector.java:308) at com.fasterxml.jackson.databind.introspect.POJOPropertiesCollector.getJsonValueAccessor(POJOPropertiesCollector.java:196) at com.fasterxml.jackson.databind.introspect.BasicBeanDescription.findJsonValueAccessor(BasicBeanDescription.java:251) at com.fasterxml.jackson.databind.ser.BasicSerializerFactory.findSerializerByAnnotations(BasicSerializerFactory.java:346) at com.fasterxml.jackson.databind.ser.BeanSerializerFactory._createSerializer2(BeanSerializerFactory.java:216) at com.fasterxml.jackson.databind.ser.BeanSerializerFactory.createSerializer(BeanSerializerFactory.java:165) at com.fasterxml.jackson.databind.SerializerProvider._createUntypedSerializer(SerializerProvider.java:1388) at com.fasterxml.jackson.databind.SerializerProvider._createAndCacheUntypedSerializer(SerializerProvider.java:1336) at com.fasterxml.jackson.databind.SerializerProvider.findValueSerializer(SerializerProvider.java:510) at com.fasterxml.jackson.databind.SerializerProvider.findTypedValueSerializer(SerializerProvider.java:713) at com.fasterxml.jackson.databind.ser.DefaultSerializerProvider.serializeValue(DefaultSerializerProvider.java:308) at com.fasterxml.jackson.databind.ObjectMapper._configAndWriteValue(ObjectMapper.java:3905) at com.fasterxml.jackson.databind.ObjectMapper.writeValueAsString(ObjectMapper.java:3219) at org.apache.spark.rdd.RDDOperationScope.toJson(RDDOperationScope.scala:52) at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:145) at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:112) at org.apache.spark.SparkContext.withScope(SparkContext.scala:699) at org.apache.spark.SparkContext.parallelize(SparkContext.scala:716) at org.apache.spark.api.java.JavaSparkContext.parallelize(JavaSparkContext.scala:134) at org.apache.spark.api.java.JavaSparkContext.parallelize(JavaSparkContext.scala:146) at cn.grgpay.WordCountService.union(WordCountService.java:48) at cn.grgpay.WordCountService.main(WordCountService.java:29)

最近在学习大数据框架 Spark 时,在 Spark2.4 版本上运行 Spark 例子的时候,遇到以上问题,解决方法如下:
在 pom.xml 文件上,在 spark 的相关依赖前添加以下依赖即可:

<dependency> <groupId>com.thoughtworks.paranamer</groupId> <artifactId>paranamer</artifactId> <version>2.8</version> </dependency>

再次运行就不报这个错误了。






扫一扫有惊喜: [![imagepng](http://itechor.top/solo/upload/bb791a58c3a84193b7f643b6849482c5_image.png) ](http://ym0214.com)
  • 大数据

    大数据(big data)是指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。

    93 引用 • 113 回帖
  • Spark

    Spark 是 UC Berkeley AMP lab 所开源的类 Hadoop MapReduce 的通用并行框架。Spark 拥有 Hadoop MapReduce 所具有的优点;但不同于 MapReduce 的是 Job 中间输出结果可以保存在内存中,从而不再需要读写 HDFS,因此 Spark 能更好地适用于数据挖掘与机器学习等需要迭代的 MapReduce 的算法。

    74 引用 • 46 回帖 • 564 关注
  • Hadoop

    Hadoop 是由 Apache 基金会所开发的一个分布式系统基础架构。用户可以在不了解分布式底层细节的情况下,开发分布式程序。充分利用集群的威力进行高速运算和存储。

    86 引用 • 122 回帖 • 624 关注

相关帖子

欢迎来到这里!

我们正在构建一个小众社区,大家在这里相互信任,以平等 • 自由 • 奔放的价值观进行分享交流。最终,希望大家能够找到与自己志同道合的伙伴,共同成长。

注册 关于
请输入回帖内容 ...

推荐标签 标签

  • Node.js

    Node.js 是一个基于 Chrome JavaScript 运行时建立的平台, 用于方便地搭建响应速度快、易于扩展的网络应用。Node.js 使用事件驱动, 非阻塞 I/O 模型而得以轻量和高效。

    139 引用 • 269 回帖 • 1 关注
  • 国际化

    i18n(其来源是英文单词 internationalization 的首末字符 i 和 n,18 为中间的字符数)是“国际化”的简称。对程序来说,国际化是指在不修改代码的情况下,能根据不同语言及地区显示相应的界面。

    8 引用 • 26 回帖 • 5 关注
  • 运维

    互联网运维工作,以服务为中心,以稳定、安全、高效为三个基本点,确保公司的互联网业务能够 7×24 小时为用户提供高质量的服务。

    150 引用 • 257 回帖 • 3 关注
  • Google

    Google(Google Inc.,NASDAQ:GOOG)是一家美国上市公司(公有股份公司),于 1998 年 9 月 7 日以私有股份公司的形式创立,设计并管理一个互联网搜索引擎。Google 公司的总部称作“Googleplex”,它位于加利福尼亚山景城。Google 目前被公认为是全球规模最大的搜索引擎,它提供了简单易用的免费服务。不作恶(Don't be evil)是谷歌公司的一项非正式的公司口号。

    49 引用 • 192 回帖 • 1 关注
  • 安全

    安全永远都不是一个小问题。

    204 引用 • 816 回帖
  • Kotlin

    Kotlin 是一种在 Java 虚拟机上运行的静态类型编程语言,由 JetBrains 设计开发并开源。Kotlin 可以编译成 Java 字节码,也可以编译成 JavaScript,方便在没有 JVM 的设备上运行。在 Google I/O 2017 中,Google 宣布 Kotlin 成为 Android 官方开发语言。

    19 引用 • 33 回帖 • 75 关注
  • MyBatis

    MyBatis 本是 Apache 软件基金会 的一个开源项目 iBatis,2010 年这个项目由 Apache 软件基金会迁移到了 google code,并且改名为 MyBatis ,2013 年 11 月再次迁移到了 GitHub。

    170 引用 • 414 回帖 • 379 关注
  • 小说

    小说是以刻画人物形象为中心,通过完整的故事情节和环境描写来反映社会生活的文学体裁。

    30 引用 • 108 回帖
  • Outlook
    1 引用 • 5 回帖 • 3 关注
  • 书籍

    宋真宗赵恒曾经说过:“书中自有黄金屋,书中自有颜如玉。”

    76 引用 • 389 回帖
  • 工具

    子曰:“工欲善其事,必先利其器。”

    294 引用 • 739 回帖 • 1 关注
  • 智能合约

    智能合约(Smart contract)是一种旨在以信息化方式传播、验证或执行合同的计算机协议。智能合约允许在没有第三方的情况下进行可信交易,这些交易可追踪且不可逆转。智能合约概念于 1994 年由 Nick Szabo 首次提出。

    1 引用 • 11 回帖 • 1 关注
  • 正则表达式

    正则表达式(Regular Expression)使用单个字符串来描述、匹配一系列遵循某个句法规则的字符串。

    31 引用 • 94 回帖 • 3 关注
  • 反馈

    Communication channel for makers and users.

    124 引用 • 928 回帖 • 263 关注
  • sts
    2 引用 • 2 回帖 • 207 关注
  • 设计模式

    设计模式(Design pattern)代表了最佳的实践,通常被有经验的面向对象的软件开发人员所采用。设计模式是软件开发人员在软件开发过程中面临的一般问题的解决方案。这些解决方案是众多软件开发人员经过相当长的一段时间的试验和错误总结出来的。

    200 引用 • 120 回帖
  • 导航

    各种网址链接、内容导航。

    43 引用 • 177 回帖
  • Spark

    Spark 是 UC Berkeley AMP lab 所开源的类 Hadoop MapReduce 的通用并行框架。Spark 拥有 Hadoop MapReduce 所具有的优点;但不同于 MapReduce 的是 Job 中间输出结果可以保存在内存中,从而不再需要读写 HDFS,因此 Spark 能更好地适用于数据挖掘与机器学习等需要迭代的 MapReduce 的算法。

    74 引用 • 46 回帖 • 564 关注
  • OAuth

    OAuth 协议为用户资源的授权提供了一个安全的、开放而又简易的标准。与以往的授权方式不同之处是 oAuth 的授权不会使第三方触及到用户的帐号信息(如用户名与密码),即第三方无需使用用户的用户名与密码就可以申请获得该用户资源的授权,因此 oAuth 是安全的。oAuth 是 Open Authorization 的简写。

    36 引用 • 103 回帖 • 23 关注
  • Windows

    Microsoft Windows 是美国微软公司研发的一套操作系统,它问世于 1985 年,起初仅仅是 Microsoft-DOS 模拟环境,后续的系统版本由于微软不断的更新升级,不但易用,也慢慢的成为家家户户人们最喜爱的操作系统。

    224 引用 • 475 回帖
  • Excel
    31 引用 • 28 回帖
  • LaTeX

    LaTeX(音译“拉泰赫”)是一种基于 ΤΕΧ 的排版系统,由美国计算机学家莱斯利·兰伯特(Leslie Lamport)在 20 世纪 80 年代初期开发,利用这种格式,即使使用者没有排版和程序设计的知识也可以充分发挥由 TeX 所提供的强大功能,能在几天,甚至几小时内生成很多具有书籍质量的印刷品。对于生成复杂表格和数学公式,这一点表现得尤为突出。因此它非常适用于生成高印刷质量的科技和数学类文档。

    12 引用 • 54 回帖 • 23 关注
  • MongoDB

    MongoDB(来自于英文单词“Humongous”,中文含义为“庞大”)是一个基于分布式文件存储的数据库,由 C++ 语言编写。旨在为应用提供可扩展的高性能数据存储解决方案。MongoDB 是一个介于关系数据库和非关系数据库之间的产品,是非关系数据库当中功能最丰富,最像关系数据库的。它支持的数据结构非常松散,是类似 JSON 的 BSON 格式,因此可以存储比较复杂的数据类型。

    90 引用 • 59 回帖 • 1 关注
  • SMTP

    SMTP(Simple Mail Transfer Protocol)即简单邮件传输协议,它是一组用于由源地址到目的地址传送邮件的规则,由它来控制信件的中转方式。SMTP 协议属于 TCP/IP 协议簇,它帮助每台计算机在发送或中转信件时找到下一个目的地。

    4 引用 • 18 回帖 • 635 关注
  • SOHO

    为成为自由职业者在家办公而努力吧!

    7 引用 • 55 回帖 • 1 关注
  • 创业

    你比 99% 的人都优秀么?

    82 引用 • 1395 回帖
  • Eclipse

    Eclipse 是一个开放源代码的、基于 Java 的可扩展开发平台。就其本身而言,它只是一个框架和一组服务,用于通过插件组件构建开发环境。

    75 引用 • 258 回帖 • 637 关注