记录学习 Spark 过程遇到的一个问题

本贴最后更新于 2254 天前,其中的信息可能已经时移世改

Exception in thread "main" java.lang.ArrayIndexOutOfBoundsException: 10582 at com.thoughtworks.paranamer.BytecodeReadingParanamer$ClassReader.accept(BytecodeReadingParanamer.java:563) at com.thoughtworks.paranamer.BytecodeReadingParanamer$ClassReader.access$200(BytecodeReadingParanamer.java:338) at com.thoughtworks.paranamer.BytecodeReadingParanamer.lookupParameterNames(BytecodeReadingParanamer.java:103) at com.thoughtworks.paranamer.CachingParanamer.lookupParameterNames(CachingParanamer.java:90) at com.fasterxml.jackson.module.scala.introspect.BeanIntrospector$.getCtorParams(BeanIntrospector.scala:44) at com.fasterxml.jackson.module.scala.introspect.BeanIntrospector$.$anonfun$apply$1(BeanIntrospector.scala:58) at com.fasterxml.jackson.module.scala.introspect.BeanIntrospector$.$anonfun$apply$1$adapted(BeanIntrospector.scala:58) at scala.collection.TraversableLike.$anonfun$flatMap$1(TraversableLike.scala:240) at scala.collection.Iterator.foreach(Iterator.scala:937) at scala.collection.Iterator.foreach$(Iterator.scala:937) at scala.collection.AbstractIterator.foreach(Iterator.scala:1425) at scala.collection.IterableLike.foreach(IterableLike.scala:70) at scala.collection.IterableLike.foreach$(IterableLike.scala:69) at scala.collection.AbstractIterable.foreach(Iterable.scala:54) at scala.collection.TraversableLike.flatMap(TraversableLike.scala:240) at scala.collection.TraversableLike.flatMap$(TraversableLike.scala:237) at scala.collection.AbstractTraversable.flatMap(Traversable.scala:104) at com.fasterxml.jackson.module.scala.introspect.BeanIntrospector$.findConstructorParam$1(BeanIntrospector.scala:58) at com.fasterxml.jackson.module.scala.introspect.BeanIntrospector$.$anonfun$apply$19(BeanIntrospector.scala:176) at scala.collection.TraversableLike.$anonfun$map$1(TraversableLike.scala:233) at scala.collection.IndexedSeqOptimized.foreach(IndexedSeqOptimized.scala:32) at scala.collection.IndexedSeqOptimized.foreach$(IndexedSeqOptimized.scala:29) at scala.collection.mutable.ArrayOps$ofRef.foreach(ArrayOps.scala:194) at scala.collection.TraversableLike.map(TraversableLike.scala:233) at scala.collection.TraversableLike.map$(TraversableLike.scala:226) at scala.collection.mutable.ArrayOps$ofRef.map(ArrayOps.scala:194) at com.fasterxml.jackson.module.scala.introspect.BeanIntrospector$.$anonfun$apply$14(BeanIntrospector.scala:170) at com.fasterxml.jackson.module.scala.introspect.BeanIntrospector$.$anonfun$apply$14$adapted(BeanIntrospector.scala:169) at scala.collection.TraversableLike.$anonfun$flatMap$1(TraversableLike.scala:240) at scala.collection.immutable.List.foreach(List.scala:388) at scala.collection.TraversableLike.flatMap(TraversableLike.scala:240) at scala.collection.TraversableLike.flatMap$(TraversableLike.scala:237) at scala.collection.immutable.List.flatMap(List.scala:351) at com.fasterxml.jackson.module.scala.introspect.BeanIntrospector$.apply(BeanIntrospector.scala:169) at com.fasterxml.jackson.module.scala.introspect.ScalaAnnotationIntrospector$._descriptorFor(ScalaAnnotationIntrospectorModule.scala:21) at com.fasterxml.jackson.module.scala.introspect.ScalaAnnotationIntrospector$.fieldName(ScalaAnnotationIntrospectorModule.scala:29) at com.fasterxml.jackson.module.scala.introspect.ScalaAnnotationIntrospector$.findImplicitPropertyName(ScalaAnnotationIntrospectorModule.scala:77) at com.fasterxml.jackson.databind.introspect.AnnotationIntrospectorPair.findImplicitPropertyName(AnnotationIntrospectorPair.java:490) at com.fasterxml.jackson.databind.introspect.POJOPropertiesCollector._addFields(POJOPropertiesCollector.java:380) at com.fasterxml.jackson.databind.introspect.POJOPropertiesCollector.collectAll(POJOPropertiesCollector.java:308) at com.fasterxml.jackson.databind.introspect.POJOPropertiesCollector.getJsonValueAccessor(POJOPropertiesCollector.java:196) at com.fasterxml.jackson.databind.introspect.BasicBeanDescription.findJsonValueAccessor(BasicBeanDescription.java:251) at com.fasterxml.jackson.databind.ser.BasicSerializerFactory.findSerializerByAnnotations(BasicSerializerFactory.java:346) at com.fasterxml.jackson.databind.ser.BeanSerializerFactory._createSerializer2(BeanSerializerFactory.java:216) at com.fasterxml.jackson.databind.ser.BeanSerializerFactory.createSerializer(BeanSerializerFactory.java:165) at com.fasterxml.jackson.databind.SerializerProvider._createUntypedSerializer(SerializerProvider.java:1388) at com.fasterxml.jackson.databind.SerializerProvider._createAndCacheUntypedSerializer(SerializerProvider.java:1336) at com.fasterxml.jackson.databind.SerializerProvider.findValueSerializer(SerializerProvider.java:510) at com.fasterxml.jackson.databind.SerializerProvider.findTypedValueSerializer(SerializerProvider.java:713) at com.fasterxml.jackson.databind.ser.DefaultSerializerProvider.serializeValue(DefaultSerializerProvider.java:308) at com.fasterxml.jackson.databind.ObjectMapper._configAndWriteValue(ObjectMapper.java:3905) at com.fasterxml.jackson.databind.ObjectMapper.writeValueAsString(ObjectMapper.java:3219) at org.apache.spark.rdd.RDDOperationScope.toJson(RDDOperationScope.scala:52) at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:145) at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:112) at org.apache.spark.SparkContext.withScope(SparkContext.scala:699) at org.apache.spark.SparkContext.parallelize(SparkContext.scala:716) at org.apache.spark.api.java.JavaSparkContext.parallelize(JavaSparkContext.scala:134) at org.apache.spark.api.java.JavaSparkContext.parallelize(JavaSparkContext.scala:146) at cn.grgpay.WordCountService.union(WordCountService.java:48) at cn.grgpay.WordCountService.main(WordCountService.java:29)

最近在学习大数据框架 Spark 时,在 Spark2.4 版本上运行 Spark 例子的时候,遇到以上问题,解决方法如下:
在 pom.xml 文件上,在 spark 的相关依赖前添加以下依赖即可:

<dependency> <groupId>com.thoughtworks.paranamer</groupId> <artifactId>paranamer</artifactId> <version>2.8</version> </dependency>

再次运行就不报这个错误了。






扫一扫有惊喜: [![imagepng](http://itechor.top/solo/upload/bb791a58c3a84193b7f643b6849482c5_image.png) ](http://ym0214.com)
  • 大数据

    大数据(big data)是指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。

    93 引用 • 113 回帖
  • Spark

    Spark 是 UC Berkeley AMP lab 所开源的类 Hadoop MapReduce 的通用并行框架。Spark 拥有 Hadoop MapReduce 所具有的优点;但不同于 MapReduce 的是 Job 中间输出结果可以保存在内存中,从而不再需要读写 HDFS,因此 Spark 能更好地适用于数据挖掘与机器学习等需要迭代的 MapReduce 的算法。

    74 引用 • 46 回帖 • 564 关注
  • Hadoop

    Hadoop 是由 Apache 基金会所开发的一个分布式系统基础架构。用户可以在不了解分布式底层细节的情况下,开发分布式程序。充分利用集群的威力进行高速运算和存储。

    86 引用 • 122 回帖 • 624 关注

相关帖子

欢迎来到这里!

我们正在构建一个小众社区,大家在这里相互信任,以平等 • 自由 • 奔放的价值观进行分享交流。最终,希望大家能够找到与自己志同道合的伙伴,共同成长。

注册 关于
请输入回帖内容 ...

推荐标签 标签

  • SQLite

    SQLite 是一个进程内的库,实现了自给自足的、无服务器的、零配置的、事务性的 SQL 数据库引擎。SQLite 是全世界使用最为广泛的数据库引擎。

    5 引用 • 7 回帖
  • 安全

    安全永远都不是一个小问题。

    204 引用 • 816 回帖 • 2 关注
  • 微信

    腾讯公司 2011 年 1 月 21 日推出的一款手机通讯软件。用户可以通过摇一摇、搜索号码、扫描二维码等添加好友和关注公众平台,同时可以将自己看到的精彩内容分享到微信朋友圈。

    132 引用 • 796 回帖
  • OpenShift

    红帽提供的 PaaS 云,支持多种编程语言,为开发人员提供了更为灵活的框架、存储选择。

    14 引用 • 20 回帖 • 642 关注
  • SendCloud

    SendCloud 由搜狐武汉研发中心孵化的项目,是致力于为开发者提供高质量的触发邮件服务的云端邮件发送平台,为开发者提供便利的 API 接口来调用服务,让邮件准确迅速到达用户收件箱并获得强大的追踪数据。

    2 引用 • 8 回帖 • 489 关注
  • HBase

    HBase 是一个分布式的、面向列的开源数据库,该技术来源于 Fay Chang 所撰写的 Google 论文 “Bigtable:一个结构化数据的分布式存储系统”。就像 Bigtable 利用了 Google 文件系统所提供的分布式数据存储一样,HBase 在 Hadoop 之上提供了类似于 Bigtable 的能力。

    17 引用 • 6 回帖 • 71 关注
  • QQ

    1999 年 2 月腾讯正式推出“腾讯 QQ”,在线用户由 1999 年的 2 人(马化腾和张志东)到现在已经发展到上亿用户了,在线人数超过一亿,是目前使用最广泛的聊天软件之一。

    45 引用 • 557 回帖
  • Ruby

    Ruby 是一种开源的面向对象程序设计的服务器端脚本语言,在 20 世纪 90 年代中期由日本的松本行弘(まつもとゆきひろ/Yukihiro Matsumoto)设计并开发。在 Ruby 社区,松本也被称为马茨(Matz)。

    7 引用 • 31 回帖 • 243 关注
  • 大数据

    大数据(big data)是指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。

    93 引用 • 113 回帖 • 1 关注
  • Flutter

    Flutter 是谷歌的移动 UI 框架,可以快速在 iOS 和 Android 上构建高质量的原生用户界面。 Flutter 可以与现有的代码一起工作,它正在被越来越多的开发者和组织使用,并且 Flutter 是完全免费、开源的。

    39 引用 • 92 回帖 • 3 关注
  • jsoup

    jsoup 是一款 Java 的 HTML 解析器,可直接解析某个 URL 地址、HTML 文本内容。它提供了一套非常省力的 API,可通过 DOM,CSS 以及类似于 jQuery 的操作方法来取出和操作数据。

    6 引用 • 1 回帖 • 491 关注
  • PostgreSQL

    PostgreSQL 是一款功能强大的企业级数据库系统,在 BSD 开源许可证下发布。

    22 引用 • 22 回帖
  • C++

    C++ 是在 C 语言的基础上开发的一种通用编程语言,应用广泛。C++ 支持多种编程范式,面向对象编程、泛型编程和过程化编程。

    107 引用 • 153 回帖 • 2 关注
  • BAE

    百度应用引擎(Baidu App Engine)提供了 PHP、Java、Python 的执行环境,以及云存储、消息服务、云数据库等全面的云服务。它可以让开发者实现自动地部署和管理应用,并且提供动态扩容和负载均衡的运行环境,让开发者不用考虑高成本的运维工作,只需专注于业务逻辑,大大降低了开发者学习和迁移的成本。

    19 引用 • 75 回帖 • 655 关注
  • 旅游

    希望你我能在旅途中找到人生的下一站。

    93 引用 • 901 回帖
  • JetBrains

    JetBrains 是一家捷克的软件开发公司,该公司位于捷克的布拉格,并在俄国的圣彼得堡及美国麻州波士顿都设有办公室,该公司最为人所熟知的产品是 Java 编程语言开发撰写时所用的集成开发环境:IntelliJ IDEA

    18 引用 • 54 回帖 • 4 关注
  • Sandbox

    如果帖子标签含有 Sandbox ,则该帖子会被视为“测试帖”,主要用于测试社区功能,排查 bug 等,该标签下内容不定期进行清理。

    421 引用 • 1247 回帖 • 591 关注
  • 房星科技

    房星网,我们不和没有钱的程序员谈理想,我们要让程序员又有理想又有钱。我们有雄厚的房地产行业线下资源,遍布昆明全城的 100 家门店、四千地产经纪人是我们坚实的后盾。

    6 引用 • 141 回帖 • 586 关注
  • Sym

    Sym 是一款用 Java 实现的现代化社区(论坛/BBS/社交网络/博客)系统平台。

    下一代的社区系统,为未来而构建

    524 引用 • 4601 回帖 • 697 关注
  • 30Seconds

    📙 前端知识精选集,包含 HTML、CSS、JavaScript、React、Node、安全等方面,每天仅需 30 秒。

    • 精选常见面试题,帮助您准备下一次面试
    • 精选常见交互,帮助您拥有简洁酷炫的站点
    • 精选有用的 React 片段,帮助你获取最佳实践
    • 精选常见代码集,帮助您提高打码效率
    • 整理前端界的最新资讯,邀您一同探索新世界
    488 引用 • 384 回帖 • 2 关注
  • Gzip

    gzip (GNU zip)是 GNU 自由软件的文件压缩程序。我们在 Linux 中经常会用到后缀为 .gz 的文件,它们就是 Gzip 格式的。现今已经成为互联网上使用非常普遍的一种数据压缩格式,或者说一种文件格式。

    9 引用 • 12 回帖 • 167 关注
  • HHKB

    HHKB 是富士通的 Happy Hacking 系列电容键盘。电容键盘即无接点静电电容式键盘(Capacitive Keyboard)。

    5 引用 • 74 回帖 • 487 关注
  • MongoDB

    MongoDB(来自于英文单词“Humongous”,中文含义为“庞大”)是一个基于分布式文件存储的数据库,由 C++ 语言编写。旨在为应用提供可扩展的高性能数据存储解决方案。MongoDB 是一个介于关系数据库和非关系数据库之间的产品,是非关系数据库当中功能最丰富,最像关系数据库的。它支持的数据结构非常松散,是类似 JSON 的 BSON 格式,因此可以存储比较复杂的数据类型。

    90 引用 • 59 回帖 • 2 关注
  • Ant-Design

    Ant Design 是服务于企业级产品的设计体系,基于确定和自然的设计价值观上的模块化解决方案,让设计者和开发者专注于更好的用户体验。

    17 引用 • 23 回帖 • 4 关注
  • Visio
    1 引用 • 2 回帖
  • frp

    frp 是一个可用于内网穿透的高性能的反向代理应用,支持 TCP、UDP、 HTTP 和 HTTPS 协议。

    20 引用 • 7 回帖 • 3 关注
  • wolai

    我来 wolai:不仅仅是未来的云端笔记!

    2 引用 • 14 回帖