经典排序算法 -- 快速排序算法详解

本贴最后更新于 2166 天前,其中的信息可能已经时移世易

经典排序算法--快速排序算法详解

快速排序(QuickSort)

动态示意图

gif

上一节的冒泡排序可以说是我们学习第一个真正的排序算法,并且解决了桶排序浪费空间的问题,但在算法的执行效率上却牺牲了很多,它的时间复杂度达到了 O(N2)。假如我们的计算机每秒钟可以运行 10 亿次,那么对 1 亿个数进行排序,桶排序则只需要 0.1 秒,而冒泡排序则需要 1 千万秒,达到 115 天之久,是不是很吓人。那有没有既不浪费空间又可以快一点的排序算法呢?那就是“快速排序”啦!光听这个名字是不是就觉得很高端呢。

假设我们现在对“6 1 2 7 9 3 4 5 10 8”这个 10 个数进行排序。首先在这个序列中随便找一个数作为基准数(不要被这个名词吓到了,就是一个用来参照的数,待会你就知道它用来做啥的了)。为了方便,就让第一个数 6 作为基准数吧。接下来,需要将这个序列中所有比基准数大的数放在 6 的右边,比基准数小的数放在 6 的左边,类似下面这种排列。

3 1 2 5 4 6 9 7 10 8

在初始状态下,数字 6 在序列的第 1 位。我们的目标是将 6 挪到序列中间的某个位置,假设这个位置是 k。现在就需要寻找这个 k,并且以第 k 位为分界点,左边的数都小于等于 6,右边的数都大于等于 6。想一想,你有办法可以做到这点吗?

给你一个提示吧。请回忆一下冒泡排序,是如何通过“交换”,一步步让每个数归位的。此时你也可以通过“交换”的方法来达到目的。具体是如何一步步交换呢?怎样交换才既方便又节省时间呢?先别急着往下看,拿出笔来,在纸上画画看。我高中时第一次学习冒泡排序算法的时候,就觉得冒泡排序很浪费时间,每次都只能对相邻的两个数进行比较,这显然太不合理了。于是我就想了一个办法,后来才知道原来这就是“快速排序”,请允许我小小的自恋一下(^o^).

方法其实很简单:分别从初始序列“6 1 2 7 9 3 4 5 10 8”两端开始“探测”。先从右往左找一个小于 6 的数,再从左往右找一个大于 6 的数,然后交换他们。这里可以用两个变量 i 和 j,分别指向序列最左边和最右边。我们为这两个变量起个好听的名字“哨兵 i”和“哨兵 j”。刚开始的时候让哨兵 i 指向序列的最左边(即 i=1),指向数字 6。让哨兵 j 指向序列的最右边(即 j=10),指向数字 8。

ppl0170png

首先哨兵 j 开始出动。因为此处设置的基准数是最左边的数,所以需要让哨兵 j 先出动,这一点非常重要(请自己想一想为什么)。哨兵 j 一步一步地向左挪动(即 j--),直到找到一个小于 6 的数停下来。接下来哨兵 i 再一步一步向右挪动(即 i++),直到找到一个数大于 6 的数停下来。最后哨兵 j 停在了数字 5 面前,哨兵 i 停在了数字 7 面前。

ppl0171png

现在交换哨兵 i 和哨兵 j 所指向的元素的值。交换之后的序列如下。

6 1 2 5 9 3 4 7 10 8

ppl0172png

到此,第一次交换结束。接下来开始哨兵 j 继续向左挪动(再友情提醒,每次必须是哨兵 j 先出发)。他发现了 4(比基准数 6 要小,满足要求)之后停了下来。哨兵 i 也继续向右挪动的,他发现了 9(比基准数 6 要大,满足要求)之后停了下来。此时再次进行交换,交换之后的序列如下。

6 1 2 5 4 3 9 7 10 8

第二次交换结束,“探测”继续。哨兵 j 继续向左挪动,他发现了 3(比基准数 6 要小,满足要求)之后又停了下来。哨兵 i 继续向右移动,糟啦!此时哨兵 i 和哨兵 j 相遇了,哨兵 i 和哨兵 j 都走到 3 面前。说明此时“探测”结束。我们将基准数 6 和 3 进行交换。交换之后的序列如下。

3 1 2 5 4 6 9 7 10 8

ppl0173png

到此第一轮“探测”真正结束。此时以基准数 6 为分界点,6 左边的数都小于等于 6,6 右边的数都大于等于 6。回顾一下刚才的过程,其实哨兵 j 的使命就是要找小于基准数的数,而哨兵 i 的使命就是要找大于基准数的数,直到 i 和 j 碰头为止。

OK,解释完毕。现在基准数 6 已经归位,它正好处在序列的第 6 位。此时我们已经将原来的序列,以 6 为分界点拆分成了两个序列,左边的序列是“3 1 2 5 4”,右边的序列是“9 7 10 8”。接下来还需要分别处理这两个序列。因为 6 左边和右边的序列目前都还是很混乱的。不过不要紧,我们已经掌握了方法,接下来只要模拟刚才的方法分别处理 6 左边和右边的序列即可。现在先来处理 6 左边的序列现吧。

左边的序列是“3 1 2 5 4”。请将这个序列以 3 为基准数进行调整,使得 3 左边的数都小于等于 3,3 右边的数都大于等于 3。好了开始动笔吧。

如果你模拟的没有错,调整完毕之后的序列的顺序应该是。

2 1 3 5 4

OK,现在 3 已经归位。接下来需要处理 3 左边的序列“2 1”和右边的序列“5 4”。对序列“2 1”以 2 为基准数进行调整,处理完毕之后的序列为“1 2”,到此 2 已经归位。序列“1”只有一个数,也不需要进行任何处理。至此我们对序列“2 1”已全部处理完毕,得到序列是“1 2”。序列“5 4”的处理也仿照此方法,最后得到的序列如下。

1 2 3 4 5 6 9 7 10 8

对于序列“9 7 10 8”也模拟刚才的过程,直到不可拆分出新的子序列为止。最终将会得到这样的序列,如下。

1 2 3 4 5 6 7 8 9 10

到此,排序完全结束。细心的同学可能已经发现,快速排序的每一轮处理其实就是将这一轮的基准数归位,直到所有的数都归位为止,排序就结束了。下面上个霸气的图来描述下整个算法的处理过程。

ppl0174png

快速排序之所比较快,因为相比冒泡排序,每次交换是跳跃式的。每次排序的时候设置一个基准点,将小于等于基准点的数全部放到基准点的左边,将大于等于基准点的数全部放到基准点的右边。这样在每次交换的时候就不会像冒泡排序一样每次只能在相邻的数之间进行交换,交换的距离就大的多了。因此总的比较和交换次数就少了,速度自然就提高了。当然在最坏的情况下,仍可能是相邻的两个数进行了交换。因此快速排序的最差时间复杂度和冒泡排序是一样的都是 O(N2),它的平均时间复杂度为 O(NlogN)。其实快速排序是基于一种叫做“二分”的思想。我们后面还会遇到“二分”思想,到时候再聊。先上代码,如下。

public static int Partition(int[] a,int p,int r){
  int x=a[r-1];
  int i=p-1;
  int temp;
  for(int j=p;j<=r-1;j++){
    if(a[j-1]<=x){
      // 交换(a[j-1],a[i-1]);
      i++;
      temp=a[j-1];
      a[j-1]=a[i-1];
      a[i-1]=temp;
    }
  }
  //交换(a[r-1,a[i+1-1]);
  temp=a[r-1];
  a[r-1]=a[i+1-1];
  a[i+1-1]=temp;
  return i+1;
}
public static void QuickSort(int[] a,int p,int r){
  if(p<r){
    int q=Partition(a,p,r);
    QuickSort(a,p,q-1);
    QuickSort(a,q+1,r);
  }
}
//main方法中将数组传入排序方法中处理,之后打印新的数组
public static void main(String[] stra){
  int[] a={7,10,3,5,4,6,2,8,1,9};
  QuickSort(a,1,10);
  for (int i=0;i<a.length;i++)
  System.out.println(a[i]);
}

上述实现不是太好,给出基本实现

   public static int partition(int []array,int lo,int hi){
        //固定的切分方式
        int key=array[lo];
        while(lo<hi){
            while(array[hi]>=key&&hi>lo){//从后半部分向前扫描
                hi--;
            }
            array[lo]=array[hi];
            while(array[lo]<=key&&hi>lo){从前半部分向后扫描
                lo++;
            }
            array[hi]=array[lo];
        }
        array[hi]=key;
        return hi;
    }
    
    public static void sort(int[] array,int lo ,int hi){
        if(lo>=hi){
            return ;
        }
        int index=partition(array,lo,hi);
        sort(array,lo,index-1);
        sort(array,index+1,hi); 
    }

快速排序的时间复杂度为 O(NlogN).

快速排序的优化

对于基准位置的选取一般有三种方法:固定切分,随机切分和三取样切分。固定切分的效率并不是太好,随机切分是常用的一种切分,效率比较高,最坏情况下时间复杂度有可能为 O(N2).对于三数取中选择基准点是最理想的一种。

三数取中切分:

	public static int partition(int[] array, int lo, int hi) {
		// 三数取中
		int mid = lo + (hi - lo) / 2;
		if (array[mid] > array[hi]) {
			swap(array[mid], array[hi]);
		}
		if (array[lo] > array[hi]) {
			swap(array[lo], array[hi]);
		}
		if (array[mid] > array[lo]) {
			swap(array[mid], array[lo]);
		}
		int key = array[lo];

		while (lo < hi) {
			while (array[hi] >= key && hi > lo) {
				hi--;
			}
			array[lo] = array[hi];
			while (array[lo] <= key && hi > lo) {
				lo++;
			}
			array[hi] = array[lo];
		}
		array[hi] = key;
		return hi;
	}

	public static void swap(int a, int b) {
		int temp = a;
		a = b;
		b = temp;
	}

	public static void sort(int[] array, int lo, int hi) {
		if (lo >= hi) {
			return;
		}
		int index = partition(array, lo, hi);
		sort(array, lo, index - 1);
		sort(array, index + 1, hi);
	}

下期预告
快速排序在序列中元素很少时,效率将比较低,不如插入排序,因此一般在序列中元素很少时使用插入排序,这样可以提高整体效率。

   public static void quick(int []array ,int lo,int hi){
        if(hi-lo+1<10){
            insertSort(array);
        }else{
            quickSort(array,lo,hi);
        }
    }

技术改变人生 Q 群:702101215
爱学习:www.aixx123.com
IT 资源网:www.pplsunny.top


  • B3log

    B3log 是一个开源组织,名字来源于“Bulletin Board Blog”缩写,目标是将独立博客与论坛结合,形成一种新的网络社区体验,详细请看 B3log 构思。目前 B3log 已经开源了多款产品:SymSoloVditor思源笔记

    1063 引用 • 3453 回帖 • 203 关注
  • 算法
    428 引用 • 254 回帖 • 24 关注

相关帖子

欢迎来到这里!

我们正在构建一个小众社区,大家在这里相互信任,以平等 • 自由 • 奔放的价值观进行分享交流。最终,希望大家能够找到与自己志同道合的伙伴,共同成长。

注册 关于
请输入回帖内容 ...

推荐标签 标签

  • BAE

    百度应用引擎(Baidu App Engine)提供了 PHP、Java、Python 的执行环境,以及云存储、消息服务、云数据库等全面的云服务。它可以让开发者实现自动地部署和管理应用,并且提供动态扩容和负载均衡的运行环境,让开发者不用考虑高成本的运维工作,只需专注于业务逻辑,大大降低了开发者学习和迁移的成本。

    19 引用 • 75 回帖 • 641 关注
  • VirtualBox

    VirtualBox 是一款开源虚拟机软件,最早由德国 Innotek 公司开发,由 Sun Microsystems 公司出品的软件,使用 Qt 编写,在 Sun 被 Oracle 收购后正式更名成 Oracle VM VirtualBox。

    10 引用 • 2 回帖 • 7 关注
  • Mobi.css

    Mobi.css is a lightweight, flexible CSS framework that focus on mobile.

    1 引用 • 6 回帖 • 734 关注
  • V2Ray
    1 引用 • 15 回帖 • 1 关注
  • etcd

    etcd 是一个分布式、高可用的 key-value 数据存储,专门用于在分布式系统中保存关键数据。

    5 引用 • 26 回帖 • 529 关注
  • Swift

    Swift 是苹果于 2014 年 WWDC(苹果开发者大会)发布的开发语言,可与 Objective-C 共同运行于 Mac OS 和 iOS 平台,用于搭建基于苹果平台的应用程序。

    36 引用 • 37 回帖 • 530 关注
  • 资讯

    资讯是用户因为及时地获得它并利用它而能够在相对短的时间内给自己带来价值的信息,资讯有时效性和地域性。

    55 引用 • 85 回帖
  • jsoup

    jsoup 是一款 Java 的 HTML 解析器,可直接解析某个 URL 地址、HTML 文本内容。它提供了一套非常省力的 API,可通过 DOM,CSS 以及类似于 jQuery 的操作方法来取出和操作数据。

    6 引用 • 1 回帖 • 478 关注
  • 一些有用的避坑指南。

    69 引用 • 93 回帖
  • Elasticsearch

    Elasticsearch 是一个基于 Lucene 的搜索服务器。它提供了一个分布式多用户能力的全文搜索引擎,基于 RESTful 接口。Elasticsearch 是用 Java 开发的,并作为 Apache 许可条款下的开放源码发布,是当前流行的企业级搜索引擎。设计用于云计算中,能够达到实时搜索,稳定,可靠,快速,安装使用方便。

    117 引用 • 99 回帖 • 211 关注
  • 域名

    域名(Domain Name),简称域名、网域,是由一串用点分隔的名字组成的 Internet 上某一台计算机或计算机组的名称,用于在数据传输时标识计算机的电子方位(有时也指地理位置)。

    43 引用 • 208 回帖 • 1 关注
  • Hexo

    Hexo 是一款快速、简洁且高效的博客框架,使用 Node.js 编写。

    21 引用 • 140 回帖 • 1 关注
  • 爬虫

    网络爬虫(Spider、Crawler),是一种按照一定的规则,自动地抓取万维网信息的程序。

    106 引用 • 275 回帖
  • JavaScript

    JavaScript 一种动态类型、弱类型、基于原型的直译式脚本语言,内置支持类型。它的解释器被称为 JavaScript 引擎,为浏览器的一部分,广泛用于客户端的脚本语言,最早是在 HTML 网页上使用,用来给 HTML 网页增加动态功能。

    729 引用 • 1327 回帖
  • WiFiDog

    WiFiDog 是一套开源的无线热点认证管理工具,主要功能包括:位置相关的内容递送;用户认证和授权;集中式网络监控。

    1 引用 • 7 回帖 • 586 关注
  • SOHO

    为成为自由职业者在家办公而努力吧!

    7 引用 • 55 回帖 • 20 关注
  • 智能合约

    智能合约(Smart contract)是一种旨在以信息化方式传播、验证或执行合同的计算机协议。智能合约允许在没有第三方的情况下进行可信交易,这些交易可追踪且不可逆转。智能合约概念于 1994 年由 Nick Szabo 首次提出。

    1 引用 • 11 回帖 • 3 关注
  • 程序员

    程序员是从事程序开发、程序维护的专业人员。

    567 引用 • 3532 回帖
  • 周末

    星期六到星期天晚,实行五天工作制后,指每周的最后两天。再过几年可能就是三天了。

    14 引用 • 297 回帖 • 1 关注
  • Sillot

    Insights(注意当前设置 master 为默认分支)

    汐洛彖夲肜矩阵(Sillot T☳Converbenk Matrix),致力于服务智慧新彖乄,具有彖乄驱动、极致优雅、开发者友好的特点。其中汐洛绞架(Sillot-Gibbet)基于自思源笔记(siyuan-note),前身是思源笔记汐洛版(更早是思源笔记汐洛分支),是智慧新录乄终端(多端融合,移动端优先)。

    主仓库地址:Hi-Windom/Sillot

    文档地址:sillot.db.sc.cn

    注意事项:

    1. ⚠️ 汐洛仍在早期开发阶段,尚不稳定
    2. ⚠️ 汐洛并非面向普通用户设计,使用前请了解风险
    3. ⚠️ 汐洛绞架基于思源笔记,开发者尽最大努力与思源笔记保持兼容,但无法实现 100% 兼容
    29 引用 • 25 回帖 • 86 关注
  • 阿里云

    阿里云是阿里巴巴集团旗下公司,是全球领先的云计算及人工智能科技公司。提供云服务器、云数据库、云安全等云计算服务,以及大数据、人工智能服务、精准定制基于场景的行业解决方案。

    89 引用 • 345 回帖
  • Sandbox

    如果帖子标签含有 Sandbox ,则该帖子会被视为“测试帖”,主要用于测试社区功能,排查 bug 等,该标签下内容不定期进行清理。

    407 引用 • 1246 回帖 • 583 关注
  • 强迫症

    强迫症(OCD)属于焦虑障碍的一种类型,是一组以强迫思维和强迫行为为主要临床表现的神经精神疾病,其特点为有意识的强迫和反强迫并存,一些毫无意义、甚至违背自己意愿的想法或冲动反反复复侵入患者的日常生活。

    15 引用 • 161 回帖
  • Quicker

    Quicker 您的指尖工具箱!操作更少,收获更多!

    32 引用 • 130 回帖 • 3 关注
  • ngrok

    ngrok 是一个反向代理,通过在公共的端点和本地运行的 Web 服务器之间建立一个安全的通道。

    7 引用 • 63 回帖 • 625 关注
  • 电影

    这是一个不能说的秘密。

    120 引用 • 599 回帖
  • Lute

    Lute 是一款结构化的 Markdown 引擎,支持 Go 和 JavaScript。

    25 引用 • 191 回帖 • 17 关注