spark 算子详解 ------Action 算子介绍

本贴最后更新于 2110 天前,其中的信息可能已经东海扬尘

一、无输出的算子

1.foreach 算子

功能:对 RDD 中的每个元素都应用 f 函数操作,无返回值。
源码:
>
/**
 * Applies a function f to all elements of this RDD. 
 */
def foreach(f: T => Unit): Unit = withScope {
  val cleanF = sc.clean(f)
  sc.runJob(this, (iter: Iterator[T]) => iter.foreach(cleanF))
}
示例:
>
scala> val rdd1 = sc.parallelize(1 to 9)
rdd1: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[20] at parallelize at <console>:24
>
scala>  rdd1.foreach(x => printf("%d ", x))
1 2 3 4 5 6 7 8 9 

2.foreachPartition 算子

功能:该函数和foreach类似,不同的是,foreach是直接在每个partition中直接对iterator执行foreach操作,传入的function只是在foreach内部使用,
而foreachPartition是在每个partition中把iterator给传入的function,让function自己对iterator进行处理(可以避免内存溢出)。
>
简单来说,foreach的iterator是针对的rdd中的元素,而foreachPartition的iterator是针对的分区本身。
二、输出到 HDFS 等文件系统的算子

1.saveAsTextFile 算子

功能:该函数将数据输出,以文本文件的形式写入本地文件系统或者HDFS等。Spark将对每个元素调用toString方法,将数据元素转换为文本文件中的一行记录。若将文件保存到本地文件系统,那么只会保存在executor所在机器的本地目录。
2.saveAsObjectFile 算子
功能:该函数用于将RDD以ObjectFile形式写入本地文件系统或者HDFS等。
源码:
>
/**
 * Save this RDD as a SequenceFile of serialized objects. 
 */
def saveAsObjectFile(path: String): Unit = withScope {
  this.mapPartitions(iter => iter.grouped(10).map(_.toArray))
  .map(x => (NullWritable.get(), new BytesWritable(Utils.serialize(x))))
  .saveAsSequenceFile(path)
}
示例:
>
scala> val rdd1 = sc.parallelize(Array(("a", 1), ("b", 2), ("c", 3), ("d", 5), ("a", 4)), 2)
rdd1: org.apache.spark.rdd.RDD[(String, Int)] = ParallelCollectionRDD[40] at parallelize at <console>:24
>
scala> rdd1.saveAsObjectFile("file:///opt/app/test/saveAsObejctFileTest.txt")

3.saveAsHadoopFile 算子

功能:该函数将RDD存储在HDFS上的文件中,可以指定outputKeyClass、outputValueClass以及压缩格式,每个分区输出一个文件。
4.saveAsSequenceFile 算子
功能:该函数用于将RDD以Hadoop SequenceFile的形式写入本地文件系统或者HDFS等。
5.saveAsHadoopDataset 算子
功能:该函数使用旧的Hadoop API将RDD输出到任何Hadoop支持的存储系统,例如Hbase,为该存储系统使用Hadoop JobConf 对象。
源码:
>
/**
 * Output the RDD to any Hadoop-supported storage system, using a Hadoop JobConf object for 
 * that storage system. The JobConf should set an OutputFormat and any output paths required 
 * (e.g. a table name to write to) in the same way as it would be configured for a Hadoop 
 * MapReduce job. 
 */
def saveAsHadoopDataset(conf: JobConf): Unit = self.withScope {
  val config = new HadoopMapRedWriteConfigUtil[K, V](new SerializableJobConf(conf))
  SparkHadoopWriter.write(
  rdd = self,
  config = config)
}
示例:
>
val rdd1 = sc.parallelize(Array(("a", 1), ("b", 2), ("c", 3), ("d", 5), ("a", 4)), 2)
var jobConf = new JobConf()
jobConf.setOutputFormat(classOf[TextOutputFormat[Text,IntWritable]])
jobConf.setOutputKeyClass(classOf[Text])
jobConf.setOutputValueClass(classOf[IntWritable])
jobConf.set("mapred.output.dir","/test/")
rdd1.saveAsHadoopDataset(jobConf)

6.saveAsNewAPIHadoopFile 算子

功能:该函数用于将RDD数据保存到HDFS上,使用新版本Hadoop API。用法基本同saveAsHadoopFile。
7.saveAsNewAPIHadoopDataset 算子
功能:使用新的Hadoop API将RDD输出到任何Hadoop支持的存储系统,例如Hbase,为该存储系统使用Hadoop Configuration对象。Conf设置一个OutputFormat和任何需要的输出路径(如要写入的表名),就像为Hadoop MapReduce作业配置的那样。
源码:
>
/**
 * Output the RDD to any Hadoop-supported storage system with new Hadoop API, using a Hadoop 
 * Configuration object for that storage system. The Conf should set an OutputFormat and any 
 * output paths required (e.g. a table name to write to) in the same way as it would be 
 * configured for a Hadoop MapReduce job. 
 * 
 * @note We should make sure our tasks are idempotent when speculation is enabled, i.e. do
 * not use output committer that writes data directly. 
 * There is an example in https://issues.apache.org/jira/browse/SPARK-10063 to show the bad 
 * result of using direct output committer with speculation enabled. 
 */
def saveAsNewAPIHadoopDataset(conf: Configuration): Unit = self.withScope {
  val config = new HadoopMapReduceWriteConfigUtil[K, V](new SerializableConfiguration(conf))
  SparkHadoopWriter.write(
  rdd = self,
  config = config)
}
示例:
>
val rdd1 = sc.parallelize(Array(("a", 1), ("b", 2), ("c", 3), ("d", 5), ("a", 4)), 2)
  var jobConf = new JobConf()
  jobConf.setOutputFormat(classOf[TextOutputFormat[Text,IntWritable]])
  jobConf.setOutputKeyClass(classOf[Text])
  jobConf.setOutputValueClass(classOf[IntWritable])
  jobConf.set("mapred.output.dir","/test/")
  rdd1.saveAsNewAPIHadoopDataset(jobConf)

三、输出 scala 集合和数据类型的算子

1.first 算子

功能:返回RDD中的第一个元素,不排序。
源码:
>
/**
 * Return the first element in this RDD. 
 */
def first(): T = withScope {
  take(1) match {
  case Array(t) => t
    case _ => throw new UnsupportedOperationException("empty collection")
  }
}
示例:
>
scala> val rdd1 = sc.parallelize(1 to 9)
rdd1: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[0] at parallelize at <console>:24
>
scala> val rdd2 = rdd1.first()
rdd2: Int = 1
>
scala> print(rdd2)
1

2.count 算子

功能:返回RDD中的元素数量。
源码:
>
/**
 * Return the number of elements in the RDD. 
 */
def count(): Long = sc.runJob(this, Utils.getIteratorSize _).sum
示例:
>
scala> val rdd1 = sc.parallelize(1 to 9)
rdd1: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[1] at parallelize at <console>:24
>
scala> println(rdd1.count())
9

3.reduce 算子

功能:将RDD中元素两两传递给输入函数,同时产生一个新值,新值与RDD中下一个元素再被传递给输入函数,直到最后只有一个值为止。
源码:
>
/**
 * Reduces the elements of this RDD using the specified commutative and 
 * associative binary operator. 
 */
def reduce(f: (T, T) => T): T = withScope {
  val cleanF = sc.clean(f)
  val reducePartition: Iterator[T] => Option[T] = iter => {
  if (iter.hasNext) {
  Some(iter.reduceLeft(cleanF))
  } else {
  None
  }
 }  var jobResult: Option[T] = None
  val mergeResult = (index: Int, taskResult: Option[T]) => {
  if (taskResult.isDefined) {
  jobResult = jobResult match {
  case Some(value) => Some(f(value, taskResult.get))
  case None => taskResult
      }
 } }  sc.runJob(this, reducePartition, mergeResult)
  // Get the final result out of our Option, or throw an exception if the RDD was empty
  jobResult.getOrElse(throw new UnsupportedOperationException("empty collection"))
}
示例:
>
scala> val rdd1 = sc.parallelize(1 to 9)
rdd1: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[2] at parallelize at <console>:24
>
scala> val rdd2 = rdd1.reduce((x,y) => x + y)
rdd2: Int = 45

4.collect 算子

功能:将一个RDD以一个Array数组形式返回其中的所有元素。
源码:
>
/**
 * Return an array that contains all of the elements in this RDD. 
 * 
 * @note This method should only be used if the resulting array is expected to be small, as
 * all the data is loaded into the driver's memory. 
 */
def collect(): Array[T] = withScope {
  val results = sc.runJob(this, (iter: Iterator[T]) => iter.toArray)
  Array.concat(results: _*)
}
示例:
>
scala> val rdd1 = sc.parallelize(1 to 9)
rdd1: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[3] at parallelize at <console>:24
>
scala> rdd1.collect
res3: Array[Int] = Array(1, 2, 3, 4, 5, 6, 7, 8, 9)

5.take 算子

功能:返回一个包含数据集前n个元素的数组(从0下标到n-1下标的元素),不排序。
6.top 算子
功能:从按降序排列的RDD中获取前N个元素,或者有可选的key函数决定顺序,返回一个数组。
源码:
>
/**
 * Returns the top k (largest) elements from this RDD as defined by the specified 
 * implicit Ordering[T] and maintains the ordering. This does the opposite of 
 * [[takeOrdered]]. For example:
 * {{{
  *   sc.parallelize(Seq(10, 4, 2, 12, 3)).top(1)
 *   // returns Array(12) 
 * 
 *   sc.parallelize(Seq(2, 3, 4, 5, 6)).top(2) 
 *   // returns Array(6, 5) 
 * }}}
 *
 * @note This method should only be used if the resulting array is expected to be small, as
 * all the data is loaded into the driver's memory. 
 * 
 * @param num k, the number of top elements to return
 * @param ord the implicit ordering for T
 * @return an array of top elements
 */def top(num: Int)(implicit ord: Ordering[T]): Array[T] = withScope {
  takeOrdered(num)(ord.reverse)
}
示例:
>
scala> val rdd1 = sc.parallelize(1 to 9)
rdd1: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[5] at parallelize at <console>:24
>
scala> val rdd2 = rdd1.top(3)
rdd2: Array[Int] = Array(9, 8, 7)

7.takeOrdered 算子

功能:返回RDD中前n个元素,并按默认顺序排序(升序)或者按自定义比较器顺序排序。
源码:
>
/**
 * Returns the first k (smallest) elements from this RDD as defined by the specified 
 * implicit Ordering[T] and maintains the ordering. This does the opposite of [[top]].
 * For example: 
 * {{{
 *   sc.parallelize(Seq(10, 4, 2, 12, 3)).takeOrdered(1)
 *   // returns Array(2) 
 * 
 *   sc.parallelize(Seq(2, 3, 4, 5, 6)).takeOrdered(2) 
 *   // returns Array(2, 3) * }}}
 *
 * @note This method should only be used if the resulting array is expected to be small, as
 * all the data is loaded into the driver's memory. 
 * 
 * @param num k, the number of elements to return
 * @param ord the implicit ordering for T
 * @return an array of top elements
 */def takeOrdered(num: Int)(implicit ord: Ordering[T]): Array[T] = withScope {
  if (num == 0) {
  Array.empty
  } else {
  val mapRDDs = mapPartitions { items =>
      // Priority keeps the largest elements, so let's reverse the ordering.
  val queue = new BoundedPriorityQueue[T](num)(ord.reverse)
  queue ++= collectionUtils.takeOrdered(items, num)(ord)
  Iterator.single(queue)
  }
  if (mapRDDs.partitions.length == 0) {
  Array.empty
    } else {
  mapRDDs.reduce { (queue1, queue2) =>
        queue1 ++= queue2
        queue1
      }.toArray.sorted(ord)
  }
 }}
示例:
>
scala> val rdd1 = sc.makeRDD(Seq(5,4,2,1,3,6))
rdd1: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[7] at makeRDD at <console>:24
>
scala> val rdd2 = rdd1.takeOrdered(3)
rdd2: Array[Int] = Array(1, 2, 3)

8.aggregate 算子

功能:aggregate函数将每个分区里面的元素进行聚合(seqOp),然后用combine函数将每个分区的结果和初始值(zeroValue)进行combine操作。这个函数最终返回的类型不需要和RDD中元素类型一致。
9.fold 算子
功能:通过op函数聚合各分区中的元素及合并各分区的元素,op函数需要两个参数,在开始时第一个传入的参数为zeroValue,T为RDD数据集的数据类型,,其作用相当于SeqOp和comOp函数都相同的aggregate函数。
  • Spark

    Spark 是 UC Berkeley AMP lab 所开源的类 Hadoop MapReduce 的通用并行框架。Spark 拥有 Hadoop MapReduce 所具有的优点;但不同于 MapReduce 的是 Job 中间输出结果可以保存在内存中,从而不再需要读写 HDFS,因此 Spark 能更好地适用于数据挖掘与机器学习等需要迭代的 MapReduce 的算法。

    74 引用 • 46 回帖 • 552 关注
  • rdd
    5 引用 • 2 回帖

相关帖子

欢迎来到这里!

我们正在构建一个小众社区,大家在这里相互信任,以平等 • 自由 • 奔放的价值观进行分享交流。最终,希望大家能够找到与自己志同道合的伙伴,共同成长。

注册 关于
请输入回帖内容 ...
  • zzgdream888

    这个算子的意思是 spark 集成的一些方法吗 😄