一、无输出的算子
1.foreach 算子
功能:对 RDD 中的每个元素都应用 f 函数操作,无返回值。
源码:
>
/**
* Applies a function f to all elements of this RDD.
*/
def foreach(f: T => Unit): Unit = withScope {
val cleanF = sc.clean(f)
sc.runJob(this, (iter: Iterator[T]) => iter.foreach(cleanF))
}
示例:
>
scala> val rdd1 = sc.parallelize(1 to 9)
rdd1: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[20] at parallelize at <console>:24
>
scala> rdd1.foreach(x => printf("%d ", x))
1 2 3 4 5 6 7 8 9
2.foreachPartition 算子
功能:该函数和foreach类似,不同的是,foreach是直接在每个partition中直接对iterator执行foreach操作,传入的function只是在foreach内部使用,
而foreachPartition是在每个partition中把iterator给传入的function,让function自己对iterator进行处理(可以避免内存溢出)。
>
简单来说,foreach的iterator是针对的rdd中的元素,而foreachPartition的iterator是针对的分区本身。
二、输出到 HDFS 等文件系统的算子
1.saveAsTextFile 算子
功能:该函数将数据输出,以文本文件的形式写入本地文件系统或者HDFS等。Spark将对每个元素调用toString方法,将数据元素转换为文本文件中的一行记录。若将文件保存到本地文件系统,那么只会保存在executor所在机器的本地目录。
2.saveAsObjectFile 算子
功能:该函数用于将RDD以ObjectFile形式写入本地文件系统或者HDFS等。
源码:
>
/**
* Save this RDD as a SequenceFile of serialized objects.
*/
def saveAsObjectFile(path: String): Unit = withScope {
this.mapPartitions(iter => iter.grouped(10).map(_.toArray))
.map(x => (NullWritable.get(), new BytesWritable(Utils.serialize(x))))
.saveAsSequenceFile(path)
}
示例:
>
scala> val rdd1 = sc.parallelize(Array(("a", 1), ("b", 2), ("c", 3), ("d", 5), ("a", 4)), 2)
rdd1: org.apache.spark.rdd.RDD[(String, Int)] = ParallelCollectionRDD[40] at parallelize at <console>:24
>
scala> rdd1.saveAsObjectFile("file:///opt/app/test/saveAsObejctFileTest.txt")
3.saveAsHadoopFile 算子
功能:该函数将RDD存储在HDFS上的文件中,可以指定outputKeyClass、outputValueClass以及压缩格式,每个分区输出一个文件。
4.saveAsSequenceFile 算子
功能:该函数用于将RDD以Hadoop SequenceFile的形式写入本地文件系统或者HDFS等。
5.saveAsHadoopDataset 算子
功能:该函数使用旧的Hadoop API将RDD输出到任何Hadoop支持的存储系统,例如Hbase,为该存储系统使用Hadoop JobConf 对象。
源码:
>
/**
* Output the RDD to any Hadoop-supported storage system, using a Hadoop JobConf object for
* that storage system. The JobConf should set an OutputFormat and any output paths required
* (e.g. a table name to write to) in the same way as it would be configured for a Hadoop
* MapReduce job.
*/
def saveAsHadoopDataset(conf: JobConf): Unit = self.withScope {
val config = new HadoopMapRedWriteConfigUtil[K, V](new SerializableJobConf(conf))
SparkHadoopWriter.write(
rdd = self,
config = config)
}
示例:
>
val rdd1 = sc.parallelize(Array(("a", 1), ("b", 2), ("c", 3), ("d", 5), ("a", 4)), 2)
var jobConf = new JobConf()
jobConf.setOutputFormat(classOf[TextOutputFormat[Text,IntWritable]])
jobConf.setOutputKeyClass(classOf[Text])
jobConf.setOutputValueClass(classOf[IntWritable])
jobConf.set("mapred.output.dir","/test/")
rdd1.saveAsHadoopDataset(jobConf)
6.saveAsNewAPIHadoopFile 算子
功能:该函数用于将RDD数据保存到HDFS上,使用新版本Hadoop API。用法基本同saveAsHadoopFile。
7.saveAsNewAPIHadoopDataset 算子
功能:使用新的Hadoop API将RDD输出到任何Hadoop支持的存储系统,例如Hbase,为该存储系统使用Hadoop Configuration对象。Conf设置一个OutputFormat和任何需要的输出路径(如要写入的表名),就像为Hadoop MapReduce作业配置的那样。
源码:
>
/**
* Output the RDD to any Hadoop-supported storage system with new Hadoop API, using a Hadoop
* Configuration object for that storage system. The Conf should set an OutputFormat and any
* output paths required (e.g. a table name to write to) in the same way as it would be
* configured for a Hadoop MapReduce job.
*
* @note We should make sure our tasks are idempotent when speculation is enabled, i.e. do
* not use output committer that writes data directly.
* There is an example in https://issues.apache.org/jira/browse/SPARK-10063 to show the bad
* result of using direct output committer with speculation enabled.
*/
def saveAsNewAPIHadoopDataset(conf: Configuration): Unit = self.withScope {
val config = new HadoopMapReduceWriteConfigUtil[K, V](new SerializableConfiguration(conf))
SparkHadoopWriter.write(
rdd = self,
config = config)
}
示例:
>
val rdd1 = sc.parallelize(Array(("a", 1), ("b", 2), ("c", 3), ("d", 5), ("a", 4)), 2)
var jobConf = new JobConf()
jobConf.setOutputFormat(classOf[TextOutputFormat[Text,IntWritable]])
jobConf.setOutputKeyClass(classOf[Text])
jobConf.setOutputValueClass(classOf[IntWritable])
jobConf.set("mapred.output.dir","/test/")
rdd1.saveAsNewAPIHadoopDataset(jobConf)
三、输出 scala 集合和数据类型的算子
1.first 算子
功能:返回RDD中的第一个元素,不排序。
源码:
>
/**
* Return the first element in this RDD.
*/
def first(): T = withScope {
take(1) match {
case Array(t) => t
case _ => throw new UnsupportedOperationException("empty collection")
}
}
示例:
>
scala> val rdd1 = sc.parallelize(1 to 9)
rdd1: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[0] at parallelize at <console>:24
>
scala> val rdd2 = rdd1.first()
rdd2: Int = 1
>
scala> print(rdd2)
1
2.count 算子
功能:返回RDD中的元素数量。
源码:
>
/**
* Return the number of elements in the RDD.
*/
def count(): Long = sc.runJob(this, Utils.getIteratorSize _).sum
示例:
>
scala> val rdd1 = sc.parallelize(1 to 9)
rdd1: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[1] at parallelize at <console>:24
>
scala> println(rdd1.count())
9
3.reduce 算子
功能:将RDD中元素两两传递给输入函数,同时产生一个新值,新值与RDD中下一个元素再被传递给输入函数,直到最后只有一个值为止。
源码:
>
/**
* Reduces the elements of this RDD using the specified commutative and
* associative binary operator.
*/
def reduce(f: (T, T) => T): T = withScope {
val cleanF = sc.clean(f)
val reducePartition: Iterator[T] => Option[T] = iter => {
if (iter.hasNext) {
Some(iter.reduceLeft(cleanF))
} else {
None
}
} var jobResult: Option[T] = None
val mergeResult = (index: Int, taskResult: Option[T]) => {
if (taskResult.isDefined) {
jobResult = jobResult match {
case Some(value) => Some(f(value, taskResult.get))
case None => taskResult
}
} } sc.runJob(this, reducePartition, mergeResult)
// Get the final result out of our Option, or throw an exception if the RDD was empty
jobResult.getOrElse(throw new UnsupportedOperationException("empty collection"))
}
示例:
>
scala> val rdd1 = sc.parallelize(1 to 9)
rdd1: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[2] at parallelize at <console>:24
>
scala> val rdd2 = rdd1.reduce((x,y) => x + y)
rdd2: Int = 45
4.collect 算子
功能:将一个RDD以一个Array数组形式返回其中的所有元素。
源码:
>
/**
* Return an array that contains all of the elements in this RDD.
*
* @note This method should only be used if the resulting array is expected to be small, as
* all the data is loaded into the driver's memory.
*/
def collect(): Array[T] = withScope {
val results = sc.runJob(this, (iter: Iterator[T]) => iter.toArray)
Array.concat(results: _*)
}
示例:
>
scala> val rdd1 = sc.parallelize(1 to 9)
rdd1: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[3] at parallelize at <console>:24
>
scala> rdd1.collect
res3: Array[Int] = Array(1, 2, 3, 4, 5, 6, 7, 8, 9)
5.take 算子
功能:返回一个包含数据集前n个元素的数组(从0下标到n-1下标的元素),不排序。
6.top 算子
功能:从按降序排列的RDD中获取前N个元素,或者有可选的key函数决定顺序,返回一个数组。
源码:
>
/**
* Returns the top k (largest) elements from this RDD as defined by the specified
* implicit Ordering[T] and maintains the ordering. This does the opposite of
* [[takeOrdered]]. For example:
* {{{
* sc.parallelize(Seq(10, 4, 2, 12, 3)).top(1)
* // returns Array(12)
*
* sc.parallelize(Seq(2, 3, 4, 5, 6)).top(2)
* // returns Array(6, 5)
* }}}
*
* @note This method should only be used if the resulting array is expected to be small, as
* all the data is loaded into the driver's memory.
*
* @param num k, the number of top elements to return
* @param ord the implicit ordering for T
* @return an array of top elements
*/def top(num: Int)(implicit ord: Ordering[T]): Array[T] = withScope {
takeOrdered(num)(ord.reverse)
}
示例:
>
scala> val rdd1 = sc.parallelize(1 to 9)
rdd1: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[5] at parallelize at <console>:24
>
scala> val rdd2 = rdd1.top(3)
rdd2: Array[Int] = Array(9, 8, 7)
7.takeOrdered 算子
功能:返回RDD中前n个元素,并按默认顺序排序(升序)或者按自定义比较器顺序排序。
源码:
>
/**
* Returns the first k (smallest) elements from this RDD as defined by the specified
* implicit Ordering[T] and maintains the ordering. This does the opposite of [[top]].
* For example:
* {{{
* sc.parallelize(Seq(10, 4, 2, 12, 3)).takeOrdered(1)
* // returns Array(2)
*
* sc.parallelize(Seq(2, 3, 4, 5, 6)).takeOrdered(2)
* // returns Array(2, 3) * }}}
*
* @note This method should only be used if the resulting array is expected to be small, as
* all the data is loaded into the driver's memory.
*
* @param num k, the number of elements to return
* @param ord the implicit ordering for T
* @return an array of top elements
*/def takeOrdered(num: Int)(implicit ord: Ordering[T]): Array[T] = withScope {
if (num == 0) {
Array.empty
} else {
val mapRDDs = mapPartitions { items =>
// Priority keeps the largest elements, so let's reverse the ordering.
val queue = new BoundedPriorityQueue[T](num)(ord.reverse)
queue ++= collectionUtils.takeOrdered(items, num)(ord)
Iterator.single(queue)
}
if (mapRDDs.partitions.length == 0) {
Array.empty
} else {
mapRDDs.reduce { (queue1, queue2) =>
queue1 ++= queue2
queue1
}.toArray.sorted(ord)
}
}}
示例:
>
scala> val rdd1 = sc.makeRDD(Seq(5,4,2,1,3,6))
rdd1: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[7] at makeRDD at <console>:24
>
scala> val rdd2 = rdd1.takeOrdered(3)
rdd2: Array[Int] = Array(1, 2, 3)
8.aggregate 算子
功能:aggregate函数将每个分区里面的元素进行聚合(seqOp),然后用combine函数将每个分区的结果和初始值(zeroValue)进行combine操作。这个函数最终返回的类型不需要和RDD中元素类型一致。
9.fold 算子
功能:通过op函数聚合各分区中的元素及合并各分区的元素,op函数需要两个参数,在开始时第一个传入的参数为zeroValue,T为RDD数据集的数据类型,,其作用相当于SeqOp和comOp函数都相同的aggregate函数。
10.lookup 算子
功能:该函数对(Key,Value)型的RDD操作,返回指定Key对应的元素形成的Seq。 这个函数处理优化的部分在于,如果这个RDD包含分区器,则只会对应处理K所在的分区,然后返回由(K,V)形成的Seq。 如果RDD不包含分区器,则需要对全RDD元素进行暴力扫描处理,搜索指定K对应的元素
11.countByKey 算子
功能:用于统计RDD[K,V]中每个K的数量,返回具有每个key的计数的(k,int)pairs的Map。
源码:
>
/**
* Count the number of elements for each key, collecting the results to a local Map.
*
* @note This method should only be used if the resulting map is expected to be small, as
* the whole thing is loaded into the driver's memory.
* To handle very large results, consider using rdd.mapValues(_ => 1L).reduceByKey(_ + _), which * returns an RDD[T, Long] instead of a map.
*/
def countByKey(): Map[K, Long] = self.withScope {
self.mapValues(_ => 1L).reduceByKey(_ + _).collect().toMap
}
示例:
>
scala> val rdd1 = sc.parallelize(Array(("a", 1), ("b", 2), ("c", 3), ("d", 4), ("a", 5)), 2)
rdd1: org.apache.spark.rdd.RDD[(String, Int)] = ParallelCollectionRDD[17] at parallelize at <console>:24
>
scala> val rdd2 = rdd1.countByKey()
rdd2: scala.collection.Map[String,Long] = Map(d -> 1, b -> 1, a -> 2, c -> 1)
欢迎来到这里!
我们正在构建一个小众社区,大家在这里相互信任,以平等 • 自由 • 奔放的价值观进行分享交流。最终,希望大家能够找到与自己志同道合的伙伴,共同成长。
注册 关于