介绍
HashMap 是基于哈希表的 Map 接口的实现,并允许使用 null 值和 null 键。HashMap 在 JDK1.8 之前使用的是哈希表 + 链表的方式存储数据。在 JDK1.8 之后,如果链表过长则将链表转成红黑树。
源码分析
继承
public class HashMap<K,V> extends AbstractMap<K,V>
implements Map<K,V>, Cloneable, Serializable {}
HashMap 继承了 AbstractMap 及实现了 Map、Cloneable 和 Serializable 接口。
成员变量
private static final long serialVersionUID = 362498820763181265L;
// aka 16 默认的初始容量 1*2*2*2*2 = 16
static final int DEFAULT_INITIAL_CAPACITY = 1 << 4;
//最大容量是2的30次方
static final int MAXIMUM_CAPACITY = 1 << 30;
//填充因子是0.75.如果哈希表中的元素超过了加载因子与当前容量的乘积,就调用rehash方法
static final float DEFAULT_LOAD_FACTOR = 0.75f;
//阈值,当桶上的链表数大于这个值会转成红黑树
static final int TREEIFY_THRESHOLD = 8;
//当桶中的立案表述小于这个值则红黑树转成链表
static final int UNTREEIFY_THRESHOLD = 6;
//转成红黑树之前,判断键值对数量大于64才会转换。
static final int MIN_TREEIFY_CAPACITY = 64;
//哈希表数组,长度一直为2的幂次
transient Node<K,V>[] table;
//键值对集合
transient Set<Map.Entry<K,V>> entrySet;
//键值对的数量
transient int size;
//统计操作次数,迭代的时候判断这个值是否变化,fail-fast抛出ConcurrentModificationException
transient int modCount;
//阈值,键值对数量大于这个值将开始扩容。threshold = table.length * loadFactor
int threshold;
//这个才是填充因子,上面DEFAULT_LOAD_FACTOR是默认的
final float loadFactor;
Node 结点
static class Node<K,V> implements Map.Entry<K,V> {
//存的结点的hash值
final int hash;
//K和V的值,这里V不用final修饰。K用final修饰,说明键只能赋值一次,不能改变,但是值可以改变
final K key;
V value;
//指向下一个结点
Node<K,V> next;
//创建一个结点
Node(int hash, K key, V value, Node<K,V> next) {
this.hash = hash;
this.key = key;
this.value = value;
this.next = next;
}
public final K getKey() { return key; }
public final V getValue() { return value; }
public final String toString() { return key + "=" + value; }
public final int hashCode() {
return Objects.hashCode(key) ^ Objects.hashCode(value);
}
//
public final V setValue(V newValue) {
V oldValue = value;
value = newValue;
return oldValue;
}
public final boolean equals(Object o) {
if (o == this)
return true;
//instanceof 判断对象o是否是类Map.Entry的一个实例
if (o instanceof Map.Entry) {
Map.Entry<?,?> e = (Map.Entry<?,?>)o;
if (Objects.equals(key, e.getKey()) &&
Objects.equals(value, e.getValue()))
return true;
}
return false;
}
}
构造函数
//传入初始容量和填充因子
public HashMap(int initialCapacity, float loadFactor) {
//判断初始容量是否合法
if (initialCapacity < 0)
throw new IllegalArgumentException("Illegal initial capacity: " +
initialCapacity)
//如果传入的初始容量大于最大容量,将用最大容量作为初始容量
if (initialCapacity > MAXIMUM_CAPACITY)
//初始容量在这里有啥用???
initialCapacity = MAXIMUM_CAPACITY;
//判断填充因子是否合法
if (loadFactor <= 0 || Float.isNaN(loadFactor))
throw new IllegalArgumentException("Illegal load factor: " +
loadFactor);
this.loadFactor = loadFactor;
//计算出来threshold阈值
this.threshold = tableSizeFor(initialCapacity);
}
/*将初始化容量转化为大于等于最接近cap的2的整数次幂
|是或运算,>>>是无符号右移,空位0补齐
以n = 011011,
011011 >>> 1 = 001101
011011 | 001101 = 011111
.....
然后继续下去,最后得到最高位和后面的都是1,就能保证结果大于等于n,并且n为奇数,最后再加1.
因为int为32位,所以最后肯定能让所有位都为1
*/
static final int tableSizeFor(int cap) {
//cap减一,是防止传进来的是2的整数次幂,减一后保证最后结果是cap本身
int n = cap - 1;
n |= n >>> 1;
n |= n >>> 2;
n |= n >>> 4;
n |= n >>> 8;
n |= n >>> 16;
return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
}
//如果没有传入填充因子,则使用默认的填充因子
public HashMap(int initialCapacity) {
this(initialCapacity, DEFAULT_LOAD_FACTOR);
}
//只默认了填充因子
public HashMap() {
this.loadFactor = DEFAULT_LOAD_FACTOR; // all other fields defaulted
}
//传入一个Map初始化
public HashMap(Map<? extends K, ? extends V> m) {
//使用默认填充因子
this.loadFactor = DEFAULT_LOAD_FACTOR;
putMapEntries(m, false);
}
final void putMapEntries(Map<? extends K, ? extends V> m, boolean evict) {
//s是长度
int s = m.size();
if (s > 0) {
//如果哈希表没有初始化
if (table == null) { // pre-size
float ft = ((float)s / loadFactor) + 1.0F;
int t = ((ft < (float)MAXIMUM_CAPACITY) ?
(int)ft : MAXIMUM_CAPACITY);
//计算出来的t大于阈值,则用t初始化阈值
if (t > threshold)
threshold = tableSizeFor(t);
} //m的个数大于阈值,则进行扩容
else if (s > threshold)
resize();
for (Map.Entry<? extends K, ? extends V> e : m.entrySet()) {
K key = e.getKey();
V value = e.getValue();
putVal(hash(key), key, value, false, evict);
}
}
}
其他方法
(table.length - 1) & hash
HashMap 根据 key 的 hashCode 计算 hash 值,知道 hash 值之后怎么确定 key 在数组中的位置呢,这里就用到了(table.length - 1) & hash;
首先使用(table.length - 1) 和 hash 进行与操作,不用担心数组越界。那为什么要数组长度减一呢?假设数组长度是 16,假设有两个 hashcode 是 8 和 9:
8 的二进制:1000
9 的二进制:1001
16 的二进制是:10000
8 & 16 = 10000
9 & 16 = 10000
这样出现了两个不同的 hashcode 在一个数组中,增加了查找的次数
如果 table.length - 1,也就是 16-1:
15 的二进制:1111
8 & 15 = 1000
9 & 15 = 1001
get
//传入Key,返回Value
public V get(Object key) {
Node<K,V> e;
//这里也能看到hashmap可以保存null
return (e = getNode(hash(key), key)) == null ? null : e.value;
}
//传入Key的hash值和key的值
final Node<K,V> getNode(int hash, Object key) {
Node<K,V>[] tab; Node<K,V> first, e; int n; K k;
//判断数组是否是null,数组长度是否大于0,取出来的结点是否为null
if ((tab = table) != null && (n = tab.length) > 0 &&
(first = tab[(n - 1) & hash]) != null) {
//先判断结点的hash值是否相同,再判断key是否相同,都相同就返回这个结点
if (first.hash == hash && // always check first node
((k = first.key) == key || (key != null && key.equals(k))))
return first;
//如果数组中还有其他的结点,就继续查找
if ((e = first.next) != null) {
//判断first是不是红黑树
if (first instanceof TreeNode)
//调用TreeNode中的getTreeNode方法,我还没看TreeNode类,一会写
return ((TreeNode<K,V>)first).getTreeNode(hash, key);
//不是红黑树,是链表,开始遍历链表
do {
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
return e;
} while ((e = e.next) != null);
}
}
return null;
}
红黑树
红黑树不是严格的平衡二叉树,红黑树比 AVL 树不平衡最多一层,查询上比 AVL 最多多一次比较。红黑树在添加和删除结点时比 AVL 减少旋转次数,旋转三次以内就会解决不平衡,而 AVL 树追求严格平衡,旋转次数很多。因此大多选用红黑树。
- 树根:必须是黑色
- 叶子节点:黑色(NULL)
- 红色节点的子节点都是黑色(不存在两个红色节点连续)
- 从任一节点到每个叶子节点路径包含相同数量的黑色节点
static final class TreeNode<K,V> extends LinkedHashMap.Entry<K,V> {
TreeNode<K,V> parent; // 父节点
TreeNode<K,V> left;
TreeNode<K,V> right;
TreeNode<K,V> prev; // 前一个节点
boolean red; //颜色
/*
这个构造函数调用了super(),LinkedHashMap.Entry的构造函数中也是调用super();就回到了上面的Node类中:
Node(int hash, K key, V value, Node<K,V> next) {}
*/
TreeNode(int hash, K key, V val, Node<K,V> next) {
super(hash, key, val, next);
}
/**
* 返回这个节点的根节点,就是不断向上找
*/
final TreeNode<K,V> root() {
for (TreeNode<K,V> r = this, p;;) {
//根节点的父节点是null
if ((p = r.parent) == null)
return r;
r = p;
}
}
/**
* 确保传进来的root节点是这个二叉树的根节点
*/
static <K,V> void moveRootToFront(Node<K,V>[] tab, TreeNode<K,V> root) {
int n;//n是HashMap的数组长度
//验证传进来的参数是否合法,tab是HashMap的哈希表
if (root != null && tab != null && (n = tab.length) > 0) {
//上面解释过了,index是哈希表数组的索引
int index = (n - 1) & root.hash;
//如果是红黑树的结构,哈希表数组中存储的结点是红黑树的头节点,所以这里直接取tab[index]就是取出来红黑树的头节点,可以看上面的图
TreeNode<K,V> first = (TreeNode<K,V>)tab[index];
//如果头节点和传进来的root不相同
if (root != first) {
Node<K,V> rn;
//直接把root放进去
tab[index] = root;
TreeNode<K,V> rp = root.prev;//rp等于root结点的前一个结点
//如果存在下一个结点
/*
这里是这样:rp-->root-->rn 现在把root拿出来当红黑树的根结点了变成了:rp-->rn
因为是双向链表,需要:rp<--rn
*/
if ((rn = root.next) != null)
//下一个结点rn的前驱结点设置为root的前驱rp<--rn
((TreeNode<K,V>)rn).prev = rp;
if (rp != null)
//rp-->rn
rp.next = rn;
/*
这里变成了:root-->frist;null<--root<--frist
*/
if (first != null)
first.prev = root;
root.next = first;
root.prev = null;
}
//checkInvariants()方法还没看,这里如果返回false就会抛出AssertionError错误,然后终止执行
assert checkInvariants(root);
}
}
/**
* Finds the node starting at root p with the given hash and key.
* The kc argument caches comparableClassFor(key) upon first use
* comparing keys.
h:hash值 k:key kc:缓存key?
给定hash值和key找到这个节点
*/
final TreeNode<K,V> find(int h, Object k, Class<?> kc) {
//从节点p还是查找
TreeNode<K,V> p = this;
do {
//ph:p节点的hash值; pk:节点p的key
int ph, dir; K pk;
TreeNode<K,V> pl = p.left, pr = p.right, q;
/*
这里能看出来,红黑树是根据hash值来判断一个节点应该去左边还是右边。这里可能会有个疑问,前面判断在哈希表数组索引也是用的hash值,那红黑树中所有的hash值不应该一样吗?其实,前面哈希表数组中判断的hash值是Node节点的hash值:Objects.hashCode(key) ^ Objects.hashCode(value);也就是key的hash值和value的hash值取异或,而这里用到的hash值是key的hash值,还不知道value是多少。
*/
//h小于p节点的hash值,向左查找
if ((ph = p.hash) > h)
p = pl;
//h大于p节点的hash值,向右查找
else if (ph < h)
p = pr;
//判断key是否相同,相同就查找到了
else if ((pk = p.key) == k || (k != null && k.equals(pk)))
return p;
//这是出现hash值相同但是key不同的情况?
else if (pl == null)
//左子树是null就去右子树找
p = pr;
else if (pr == null)
//左子树是null去右子树找
p = pl;
//comparableClassFor方法是获取k的运行时类型,compareComparables方法先判断,key与运行时kc是同类型,在通过调用k和kc实现的Comparable接口的compareTo进行比较
else if ((kc != null ||
(kc = comparableClassFor(k)) != null) &&
(dir = compareComparables(kc, k, pk)) != 0)
p = (dir < 0) ? pl : pr;
//在右子树里面递归
else if ((q = pr.find(h, k, kc)) != null)
return q;
else
p = pl;
} while (p != null);
return null;
}
/**
* 从根节点开始查找
*/
final TreeNode<K,V> getTreeNode(int h, Object k) {
//parent==null 就说明是根结点,否则就找到根结点再查找
return ((parent != null) ? root() : this).find(h, k, null);
}
/**
比较两个对象的大小,不会返回0
*/
static int tieBreakOrder(Object a, Object b) {
int d;
//比较类名,如果相同,调用本地方法为对象生成hashcode值,再继续比较
if (a == null || b == null ||
(d = a.getClass().getName().
compareTo(b.getClass().getName())) == 0)
d = (System.identityHashCode(a) <= System.identityHashCode(b) ?
-1 : 1);
return d;
}
/**
* 链表转成红黑树
*/
final void treeify(Node<K,V>[] tab) {
TreeNode<K,V> root = null;
for (TreeNode<K,V> x = this, next; x != null; x = next) {
//把x在链表里面取出来,next指向下一个结点
next = (TreeNode<K,V>)x.next;
x.left = x.right = null;//设置左右子树为null
//如果x是第一个结点,也就是root为null的情况,将父结点指向null,颜色是黑色
if (root == null) {
x.parent = null;
x.red = false;
root = x;
}
else {
K k = x.key;
int h = x.hash;
Class<?> kc = null;
//下面的代码和find函数差不多,就是找到k应该去的位置。
for (TreeNode<K,V> p = root;;) {
int dir, ph;
K pk = p.key;
if ((ph = p.hash) > h)
dir = -1;
else if (ph < h)
dir = 1;
else if ((kc == null &&
(kc = comparableClassFor(k)) == null) ||
(dir = compareComparables(kc, k, pk)) == 0)
dir = tieBreakOrder(k, pk);
TreeNode<K,V> xp = p;
//dir小于等于0去左边,大于0去右边。这里找到了应该去的位置
if ((p = (dir <= 0) ? p.left : p.right) == null) {
x.parent = xp;
if (dir <= 0)
xp.left = x;
else
xp.right = x;
//旋转节点,保持平衡
root = balanceInsertion(root, x);
break;
}
}
}
}
//将根节点放进去
moveRootToFront(tab, root);
}
/**
* 将树转成链表
*/
final Node<K,V> untreeify(HashMap<K,V> map) {
Node<K,V> hd = null, tl = null;
for (Node<K,V> q = this; q != null; q = q.next) {
Node<K,V> p = map.replacementNode(q, null);
if (tl == null)
hd = p;
else
tl.next = p;
tl = p;
}
return hd;
}
/**
* 插入元素
*/
final TreeNode<K,V> putTreeVal(HashMap<K,V> map, Node<K,V>[] tab,
int h, K k, V v) {
Class<?> kc = null;
boolean searched = false;//标记是否查找一次
TreeNode<K,V> root = (parent != null) ? root() : this; //获取根结点
for (TreeNode<K,V> p = root;;) {
int dir, ph; K pk;
if ((ph = p.hash) > h)
dir = -1;
else if (ph < h)
dir = 1;
else if ((pk = p.key) == k || (k != null && k.equals(pk)))
return p;
else if ((kc == null &&
(kc = comparableClassFor(k)) == null) ||
(dir = compareComparables(kc, k, pk)) == 0) {
//如果K和PK通过COMPARATO比较之后,如果相同就进来,并且只会进来一次
if (!searched) {
TreeNode<K,V> q, ch;
searched = true;
//从左子树或者右子树中找到就返回
if (((ch = p.left) != null &&
(q = ch.find(h, k, kc)) != null) ||
((ch = p.right) != null &&
(q = ch.find(h, k, kc)) != null))
return q;
}
dir = tieBreakOrder(k, pk);
}
//找到合适的位置,然后插入
TreeNode<K,V> xp = p;
if ((p = (dir <= 0) ? p.left : p.right) == null) {
Node<K,V> xpn = xp.next;
//创建一个新的节点
TreeNode<K,V> x = map.newTreeNode(h, k, v, xpn);
if (dir <= 0)
xp.left = x;
else
xp.right = x;
xp.next = x;
x.parent = x.prev = xp;
if (xpn != null)
((TreeNode<K,V>)xpn).prev = x;
moveRootToFront(tab, balanceInsertion(root, x));
return null;
}
}
}
/*
删除结点
1.如果删除的是红色结点则不影响性质
2。如果删除的是黑色结点,那么路径上会少一个黑色结点,破坏了性质
*/
final void removeTreeNode(HashMap<K,V> map, Node<K,V>[] tab,
boolean movable) {
int n;
if (tab == null || (n = tab.length) == 0)
return;
int index = (n - 1) & hash;
//找到根结点
TreeNode<K,V> first = (TreeNode<K,V>)tab[index], root = first, rl;
//succ表示下一个结点,pred表示上一个结点
TreeNode<K,V> succ = (TreeNode<K,V>)next, pred = prev;
//如果要删除根结点,直接将下一个结点提上来
if (pred == null)
tab[index] = first = succ;
//否则就直接将当前结点的上一个结点指向当前结点的下一个结点
else
pred.next = succ;
if (succ != null)
succ.prev = pred;
if (first == null)
return;
//根结点赋值到root
if (root.parent != null)
root = root.root();
//红黑树结点太少,转换成链表返回
if (root == null
|| (movable
&& (root.right == null
|| (rl = root.left) == null
|| rl.left == null))) {
tab[index] = first.untreeify(map); // too small
return;
}
TreeNode<K,V> p = this, pl = left, pr = right, replacement;
/*
找到结点之后,需要删除结点,红黑树删除结点分为几种情况:
情况1:删除的结点左右子树都非空(按其他二叉树删除的方式处理,转变成其他的下面的三种情况)
情况2:删除的结点左子树为空,右子树非空
情况3:删除的结点右子树为空,左子树非空
情况4:删除的结点左右子树都为空
*/
//情况1
if (pl != null && pr != null) {
//这里s指向的是当前结点p的右节点
TreeNode<K,V> s = pr, sl;
//不断找要删除结点的右子树里面的最左结点,赋值给s
while ((sl = s.left) != null) // find successor
s = sl;
//交换要删除结点右子树的最左叶子节点s和要删除结点p的颜色
boolean c = s.red; s.red = p.red; p.red = c; // swap colors
TreeNode<K,V> sr = s.right;
TreeNode<K,V> pp = p.parent;
//特殊情况,如果p结点的右结点s没有左孩子
if (s == pr) { // p was s's direct parent
//直接交换p结点和s结点
p.parent = s;
s.right = p;
}
else {
TreeNode<K,V> sp = s.parent;
//还是交换s结点和p结点
if ((p.parent = sp) != null) {
if (s == sp.left)
sp.left = p;
else
sp.right = p;
}
if ((s.right = pr) != null)
pr.parent = s;
}
p.left = null;
//如果s存在右结点,就将p设置为sr的父结点
if ((p.right = sr) != null)
sr.parent = p;
//p的左结点给s
if ((s.left = pl) != null)
pl.parent = s;
//p的父结点给s
if ((s.parent = pp) == null)
root = s;
else if (p == pp.left)
pp.left = s;
else
pp.right = s;
//如果s有右结点,则replacement等于右结点,否则为p
if (sr != null)
replacement = sr;
else
replacement = p;
}
//情况3
else if (pl != null)
replacement = pl;
//情况2
else if (pr != null)
replacement = pr;
else //情况4
replacement = p;
//当p有孩子或者s有孩子,进行删除结点操作
if (replacement != p) {
TreeNode<K,V> pp = replacement.parent = p.parent;
if (pp == null)
root = replacement;
else if (p == pp.left)
pp.left = replacement;
else
pp.right = replacement;
p.left = p.right = p.parent = null;
}
//对红黑树进行调整
TreeNode<K,V> r = p.red ? root : balanceDeletion(root, replacement);
//当p结点没有孩子,或者s结点没有孩子,进行删除操作
if (replacement == p) { // detach
TreeNode<K,V> pp = p.parent;
p.parent = null;
if (pp != null) {
if (p == pp.left)
pp.left = null;
else if (p == pp.right)
pp.right = null;
}
}
if (movable)
moveRootToFront(tab, r);
}
/**
红黑树扩容时调用拆分方法,将红黑树拆成两个链表
*/
final void split(HashMap<K,V> map, Node<K,V>[] tab, int index, int bit) {
TreeNode<K,V> b = this;
// Relink into lo and hi lists, preserving order
TreeNode<K,V> loHead = null, loTail = null;
TreeNode<K,V> hiHead = null, hiTail = null;
//两个变量计数,如果很小将变成链表,否则变成红黑树
int lc = 0, hc = 0;
for (TreeNode<K,V> e = b, next; e != null; e = next) {
next = (TreeNode<K,V>)e.next;
e.next = null;
if ((e.hash & bit) == 0) {
if ((e.prev = loTail) == null)
loHead = e;
else
loTail.next = e;
loTail = e;
++lc;
}
else {
if ((e.prev = hiTail) == null)
hiHead = e;
else
hiTail.next = e;
hiTail = e;
++hc;
}
}
if (loHead != null) {
//UNTREEIFY_THRESHOLD = 6 ,如果拆分后小于这个值就转成链表,否则就转成红黑树
if (lc <= UNTREEIFY_THRESHOLD)
tab[index] = loHead.untreeify(map);
else {
tab[index] = loHead;
if (hiHead != null) // (else is already treeified)
loHead.treeify(tab);
}
}
if (hiHead != null) {
if (hc <= UNTREEIFY_THRESHOLD)
tab[index + bit] = hiHead.untreeify(map);
else {
tab[index + bit] = hiHead;
if (loHead != null)
hiHead.treeify(tab);
}
}
}
/* ------------------------------------------------------------ */
// Red-black tree methods, all adapted from CLR
//下面是左旋和右旋调整结点,在我另外一篇博客中已经将清楚了[算法导论学习笔记--红黑树](https://www.gwt.fun/articles/2017/08/26/1546585401831.html#%E6%97%8B%E8%BD%AC)
//左旋
static <K,V> TreeNode<K,V> rotateLeft(TreeNode<K,V> root,
TreeNode<K,V> p) {
TreeNode<K,V> r, pp, rl;
if (p != null && (r = p.right) != null) {
if ((rl = p.right = r.left) != null)
rl.parent = p;
if ((pp = r.parent = p.parent) == null)
(root = r).red = false;
else if (pp.left == p)
pp.left = r;
else
pp.right = r;
r.left = p;
p.parent = r;
}
return root;
}
//右旋
static <K,V> TreeNode<K,V> rotateRight(TreeNode<K,V> root,
TreeNode<K,V> p) {
TreeNode<K,V> l, pp, lr;
if (p != null && (l = p.left) != null) {
if ((lr = p.left = l.right) != null)
lr.parent = p;
if ((pp = l.parent = p.parent) == null)
(root = l).red = false;
else if (pp.right == p)
pp.right = l;
else
pp.left = l;
l.right = p;
p.parent = l;
}
return root;
}
/*
插入结点后调整方法,插入结点遵循下面的规则:
1、插入的结点重视红色
2、如果插入结点的父结点是黑色,能保证性质
3、如果是红色,则破坏了性质,必须进行重新染色或者旋转
插入过程详解过程:https://www.gwt.fun/articles/2017/08/26/1546585401831.html#%E6%8F%92%E5%85%A5
*/
static <K,V> TreeNode<K,V> balanceInsertion(TreeNode<K,V> root,
TreeNode<K,V> x) {
x.red = true; //先设置插入的结点为红色
//xp:x的父结点;xpp:x的父结点的父结点,也就是爷爷结点;xppl:爷爷结点的左节点;xppr:爷爷结点的右结点
for (TreeNode<K,V> xp, xpp, xppl, xppr;;) {
//如果x的父结点是null,表示x是根结点,直接返回x
if ((xp = x.parent) == null) {
x.red = false;
return x;
}
//如果父结点是黑色或者不存在爷爷结点,就直接返回
else if (!xp.red || (xpp = xp.parent) == null)
return root;
//如果父结点是爷爷结点的左结点
if (xp == (xppl = xpp.left)) {
//如果爷爷结点的右结点存在,并且该结点是红色
if ((xppr = xpp.right) != null && xppr.red) {
//这里结合图看的会更明白,把叔叔结点设置成黑色,父结点设置为黑色,爷爷结点设置成红色
xppr.red = false;
xp.red = false;
xpp.red = true;
//爷爷结点赋值给x,继续循环
x = xpp;
}
//爷爷结点的右结点不存在或者叔叔结点是黑色
else {
//判断x是否是父结点的右节点
if (x == xp.right) {
//x上升至父结点,并左旋
root = rotateLeft(root, x = xp);
xpp = (xp = x.parent) == null ? null : xp.parent;
}
if (xp != null) {
//x是左孩子,x的父结点设置为黑色,x的爷爷改成红色然后右旋
xp.red = false;
if (xpp != null) {
xpp.red = true;
root = rotateRight(root, xpp);
}
}
}
}
else { //将上面的过程反过来
if (xppl != null && xppl.red) {
xppl.red = false;
xp.red = false;
xpp.red = true;
x = xpp;
}
else {
if (x == xp.left) {
root = rotateRight(root, x = xp);
xpp = (xp = x.parent) == null ? null : xp.parent;
}
if (xp != null) {
xp.red = false;
if (xpp != null) {
xpp.red = true;
root = rotateLeft(root, xpp);
}
}
}
}
}
}
/*
删除结点后调整规则:
1、如果删除红色结点,不破坏规则
2、如果是黑色,就少了一个黑色
https://www.gwt.fun/articles/2017/08/26/1546585401831.html#%E5%88%A0%E9%99%A4
*/
static <K,V> TreeNode<K,V> balanceDeletion(TreeNode<K,V> root,
TreeNode<K,V> x) {
for (TreeNode<K,V> xp, xpl, xpr;;) {
//删除后结点是null或者是根结点,不调整
if (x == null || x == root)
return root;
//x成为根结点,将x设置为黑色
else if ((xp = x.parent) == null) {
x.red = false;
return x;
}
//如果x是红的,设置成黑
else if (x.red) {
x.red = false;
return root;
}
//x是父亲的左孩子
else if ((xpl = xp.left) == x) {
//x的兄弟是红色的
if ((xpr = xp.right) != null && xpr.red) {
xpr.red = false;
xp.red = true;
root = rotateLeft(root, xp);
xpr = (xp = x.parent) == null ? null : xp.right;
}
//没有兄弟,则x到父结点位置
if (xpr == null)
x = xp;
else {
TreeNode<K,V> sl = xpr.left, sr = xpr.right;
if ((sr == null || !sr.red) &&
(sl == null || !sl.red)) {
//如果x结点的兄弟是黑色的,并且左右结点都是黑色
xpr.red = true;
x = xp;
}
else {
if (sr == null || !sr.red) {
//x的兄弟是黑色,右结点是黑色,左结点是红色
if (sl != null)
sl.red = false;
//将x的兄弟结点变成红色,然后右旋
//下面的不写了,就是那几个过程,看明白就行,代码看不看都可以
xpr.red = true;
root = rotateRight(root, xpr);
xpr = (xp = x.parent) == null ?
null : xp.right;
}
if (xpr != null) {
xpr.red = (xp == null) ? false : xp.red;
if ((sr = xpr.right) != null)
sr.red = false;
}
if (xp != null) {
xp.red = false;
root = rotateLeft(root, xp);
}
x = root;
}
}
}
else { // 反过来的
if (xpl != null && xpl.red) {
xpl.red = false;
xp.red = true;
root = rotateRight(root, xp);
xpl = (xp = x.parent) == null ? null : xp.left;
}
if (xpl == null)
x = xp;
else {
TreeNode<K,V> sl = xpl.left, sr = xpl.right;
if ((sl == null || !sl.red) &&
(sr == null || !sr.red)) {
xpl.red = true;
x = xp;
}
else {
if (sl == null || !sl.red) {
if (sr != null)
sr.red = false;
xpl.red = true;
root = rotateLeft(root, xpl);
xpl = (xp = x.parent) == null ?
null : xp.left;
}
if (xpl != null) {
xpl.red = (xp == null) ? false : xp.red;
if ((sl = xpl.left) != null)
sl.red = false;
}
if (xp != null) {
xp.red = false;
root = rotateRight(root, xp);
}
x = root;
}
}
}
}
}
/**
* 从根结点开始检查红黑树,是否符合红黑树的性质
*/
static <K,V> boolean checkInvariants(TreeNode<K,V> t) {
TreeNode<K,V> tp = t.parent, tl = t.left, tr = t.right,
tb = t.prev, tn = (TreeNode<K,V>)t.next;
if (tb != null && tb.next != t)
return false;
if (tn != null && tn.prev != t)
return false;
if (tp != null && t != tp.left && t != tp.right)
return false;
if (tl != null && (tl.parent != t || tl.hash > t.hash))
return false;
if (tr != null && (tr.parent != t || tr.hash < t.hash))
return false;
if (t.red && tl != null && tl.red && tr != null && tr.red)
return false;
if (tl != null && !checkInvariants(tl))
return false;
if (tr != null && !checkInvariants(tr))
return false;
return true;
}
}
put(K,V)
终于看完了 TreeNode 类,现在继续看 HashMap。
public V put(K key, V value) {
return putVal(hash(key), key, value, false, true);
}
final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
boolean evict) {
Node<K,V>[] tab; Node<K,V> p; int n, i;
//如果tab是空或者长度为0,就扩容
if ((tab = table) == null || (n = tab.length) == 0)
n = (tab = resize()).length;
//如果哈希表数组中是空,就创建一个结点放进去
if ((p = tab[i = (n - 1) & hash]) == null)
tab[i] = newNode(hash, key, value, null);
else {
Node<K,V> e; K k;
//hash 相同,并且key相同
if (p.hash == hash &&
((k = p.key) == key || (key != null && key.equals(k))))
e = p;
//如果是红黑树
else if (p instanceof TreeNode)
e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
else {
//遍历链表
for (int binCount = 0; ; ++binCount) {
//如果遍历完链表也没找到,就直接加在最后
if ((e = p.next) == null) {
p.next = newNode(hash, key, value, null);
//如果链表长度大于等于8就变成红黑树,同理,红黑树小于6就转成链表
if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
treeifyBin(tab, hash);
break;
}
//在链表中找到
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
break;
p = e;
}
}
//更新value值
if (e != null) { // existing mapping for key
//
V oldValue = e.value;
if (!onlyIfAbsent || oldValue == null)
e.value = value;
afterNodeAccess(e);
return oldValue;
}
}
++modCount;
//threshold是阈值,超过就要扩容
if (++size > threshold)
resize();
afterNodeInsertion(evict);
return null;
}
resize()
final Node<K,V>[] resize() {
Node<K,V>[] oldTab = table;
int oldCap = (oldTab == null) ? 0 : oldTab.length; //获取旧哈希表长度
int oldThr = threshold; //获取旧阈值
int newCap, newThr = 0;
if (oldCap > 0) {
//超过Integer最大值,就不能加了
if (oldCap >= MAXIMUM_CAPACITY) {
threshold = Integer.MAX_VALUE;
return oldTab;
}
//扩容2倍
else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
oldCap >= DEFAULT_INITIAL_CAPACITY)
newThr = oldThr << 1; // double threshold
}
else if (oldThr > 0) // initial capacity was placed in threshold
newCap = oldThr;
//调用了无参构造函数,使用默认容量16,阈值为0.75*16
else { // zero initial threshold signifies using defaults
newCap = DEFAULT_INITIAL_CAPACITY;
newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
}
//如果新阈值为0,则重新计算,如果超过了Integer最大值,就直接赋值最大值
if (newThr == 0) {
float ft = (float)newCap * loadFactor;
newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
(int)ft : Integer.MAX_VALUE);
}
threshold = newThr;//更新阈值
@SuppressWarnings({"rawtypes","unchecked"})
Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
table = newTab;
//如果旧tab里面有数据
if (oldTab != null) {
//遍历每一个哈希表数组
for (int j = 0; j < oldCap; ++j) {
Node<K,V> e;
//临时将结点赋值给e
if ((e = oldTab[j]) != null) {
oldTab[j] = null;
//如果e只有一个结点,就重新计算然后存到新tab里面
if (e.next == null)
newTab[e.hash & (newCap - 1)] = e;
//如果结点多,是红黑树,就拆分
else if (e instanceof TreeNode)
((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
else { // preserve order
Node<K,V> loHead = null, loTail = null;
Node<K,V> hiHead = null, hiTail = null;
Node<K,V> next;
do {
next = e.next;
/*
e.hash & oldCap,这个也非常的巧妙,刚在红黑树的split中看这个式子还没闷过来弯,在这里看明白了。(table.length - 1) & hash是查找索引,而这里没有减一。
这样就得出来两个值,0或者oldCap,这样就能拆成两个链表
*/
if ((e.hash & oldCap) == 0) {
if (loTail == null)
loHead = e;
else
loTail.next = e;
loTail = e;
}
else {
if (hiTail == null)
hiHead = e;
else
hiTail.next = e;
hiTail = e;
}
} while ((e = next) != null);
if (loTail != null) {
loTail.next = null;
newTab[j] = loHead;
}
if (hiTail != null) {
hiTail.next = null;
newTab[j + oldCap] = hiHead;
}
}
}
}
}
return newTab;
}
treeifyBin()
这个方法的作用是将链表转成红黑树
final void treeifyBin(Node<K,V>[] tab, int hash) {
int n, index; Node<K,V> e;
//如果链表达到了转换成红黑树的阈值,但是tab的数量没到变成红黑树的阈值,也不会变化。MIN_TREEIFY_CAPACITY = 64
if (tab == null || (n = tab.length) < MIN_TREEIFY_CAPACITY)
resize();
else if ((e = tab[index = (n - 1) & hash]) != null) {
TreeNode<K,V> hd = null, tl = null;
do {
TreeNode<K,V> p = replacementTreeNode(e, null);
if (tl == null)
hd = p;
else {
p.prev = tl;
tl.next = p;
}
tl = p;
} while ((e = e.next) != null);
if ((tab[index] = hd) != null)
hd.treeify(tab);
}
}
欢迎来到这里!
我们正在构建一个小众社区,大家在这里相互信任,以平等 • 自由 • 奔放的价值观进行分享交流。最终,希望大家能够找到与自己志同道合的伙伴,共同成长。
注册 关于