CountDownLatch、CyclicBarrier 和 Semaphore

本贴最后更新于 1546 天前,其中的信息可能已经渤澥桑田

Java.png

CountDownLatch 用法

CountDownLatch 类位于 java.util.concurrent 包下,利用它可以实现类似计数器的功能.比如有一个任务 A,它要等待其他 4 个任务执行完毕之后才能执行,此时就可以利用 CountDownLatch 来实现这种功能了.

CountDownLatch 类只提供了一个构造器:

public CountDownLatch(int count) {  };  //参数count为计数值

然后下面这 3 个方法是 CountDownLatch 类中最重要的方法:

//调用await()方法的线程会被挂起,它会等待直到count值为0才继续执行
public void await() throws InterruptedException { };
//和await()类似,只不过等待一定的时间后count值还没变为0的话就会继续执行
public boolean await(long timeout, TimeUnit unit) throws InterruptedException { };
//将count值减1
public void countDown() { };

下面看一个例子:

public class Test {
     public static void main(String[] args) {   
         final CountDownLatch latch = new CountDownLatch(2);
        
         new Thread(){
             public void run() {
                 try {
                     System.out.println("子线程"+Thread.currentThread().getName()+"正在执行");
                    Thread.sleep(3000);
                    System.out.println("子线程"+Thread.currentThread().getName()+"执行完毕");
                    latch.countDown();
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
             };
         }.start();
        
         new Thread(){
             public void run() {
                 try {
                     System.out.println("子线程"+Thread.currentThread().getName()+"正在执行");
                     Thread.sleep(3000);
                     System.out.println("子线程"+Thread.currentThread().getName()+"执行完毕");
                     latch.countDown();
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
             };
         }.start();
        
         try {
             System.out.println("等待2个子线程执行完毕...");
            latch.await();
            System.out.println("2个子线程已经执行完毕");
            System.out.println("继续执行主线程");
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
     }
}

CyclicBarrier 用法

回环栅栏,可以实现让一组线程等待至某个状态之后再全部同时执行.叫做回环是因为当所有等待线程都被释放以后,CyclicBarrier 可以被重用.我们暂且把这个状态就叫做 barrier,当调用 await()方法之后,线程就处于 barrier 了.

CyclicBarrier 类位于 java.util.concurrent 包下,CyclicBarrier 提供 2 个构造器:

public CyclicBarrier(int parties, Runnable barrierAction) { }
public CyclicBarrier(int parties) { }
  • 参数 parties 指让多少个线程或者任务等待至 barrier 状态;
  • 参数 barrierAction 为当这些线程都达到 barrier 状态时会执行的内容;

然后 CyclicBarrier 中最重要的方法就是 await 方法,它有 2 个重载版本:

public int await() throws InterruptedException, BrokenBarrierException { };
public int await(long timeout, TimeUnit unit)throws InterruptedException,BrokenBarrierException,TimeoutException { };
  • 第一个版本比较常用,用来挂起当前线程,直至所有线程都到达 barrier 状态再同时执行后续任务;
  • 第二个版本是让这些线程等待至一定的时间,如果还有线程没有到达 barrier 状态就直接让到达 barrier 的线程执行后续任务;

下面举几个例子:

有若干个线程都要进行写数据操作,并且只有所有线程都完成写数据操作之后,这些线程才能继续做后面的事情,此时就可以利用 CyclicBarrier 了:

public class Test {
    public static void main(String[] args) {
        int N = 4;
        CyclicBarrier barrier  = new CyclicBarrier(N);
        for(int i=0;i<N;i++)
            new Writer(barrier).start();
    }
    static class Writer extends Thread{
        private CyclicBarrier cyclicBarrier;
        public Writer(CyclicBarrier cyclicBarrier) {
            this.cyclicBarrier = cyclicBarrier;
        }
 
        @Override
        public void run() {
            System.out.println("线程"+Thread.currentThread().getName()+"正在写入数据...");
            try {
                Thread.sleep(5000);      //以睡眠来模拟写入数据操作
                System.out.println("线程"+Thread.currentThread().getName()+"写入数据完毕,等待其他线程写入完毕");
                cyclicBarrier.await();
            } catch (InterruptedException e) {
                e.printStackTrace();
            }catch(BrokenBarrierException e){
                e.printStackTrace();
            }
            System.out.println("所有线程写入完毕,继续处理其他任务...");
        }
    }
}

从上面程序可以看出,每个写入线程执行完写数据操作之后,就在等待其他线程写入操作完毕.当所有线程写入操作完毕之后,所有线程就继续进行后续的操作了.

如果说想在所有线程写入操作完之后,进行额外的其他操作可以为 CyclicBarrier 提供 Runnable 参数:

public class Test {
    public static void main(String[] args) {
        int N = 4;
        CyclicBarrier barrier  = new CyclicBarrier(N,new Runnable() {
            @Override
            public void run() {
                System.out.println("当前线程"+Thread.currentThread().getName());   
            }
        });
       
        for(int i=0;i<N;i++)
            new Writer(barrier).start();
    }
    static class Writer extends Thread{
        private CyclicBarrier cyclicBarrier;
        public Writer(CyclicBarrier cyclicBarrier) {
            this.cyclicBarrier = cyclicBarrier;
        }
 
        @Override
        public void run() {
            System.out.println("线程"+Thread.currentThread().getName()+"正在写入数据...");
            try {
                Thread.sleep(5000);      //以睡眠来模拟写入数据操作
                System.out.println("线程"+Thread.currentThread().getName()+"写入数据完毕,等待其他线程写入完毕");
                cyclicBarrier.await();
            } catch (InterruptedException e) {
                e.printStackTrace();
            }catch(BrokenBarrierException e){
                e.printStackTrace();
            }
            System.out.println("所有线程写入完毕,继续处理其他任务...");
        }
    }
}

从上面程序可以看出,当四个线程都到达 barrier 状态后,会从四个线程中选择一个线程去执行 Runnable.

下面看一下为 await 指定时间的效果:

public class Test {
    public static void main(String[] args) {
        int N = 4;
        CyclicBarrier barrier  = new CyclicBarrier(N);
       
        for(int i=0;i<N;i++) {
            if(i<N-1)
                new Writer(barrier).start();
            else {
                try {
                    Thread.sleep(5000);
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
                new Writer(barrier).start();
            }
        }
    }
    static class Writer extends Thread{
        private CyclicBarrier cyclicBarrier;
        public Writer(CyclicBarrier cyclicBarrier) {
            this.cyclicBarrier = cyclicBarrier;
        }
 
        @Override
        public void run() {
            System.out.println("线程"+Thread.currentThread().getName()+"正在写入数据...");
            try {
                Thread.sleep(5000);      //以睡眠来模拟写入数据操作
                System.out.println("线程"+Thread.currentThread().getName()+"写入数据完毕,等待其他线程写入完毕");
                try {
                    cyclicBarrier.await(2000, TimeUnit.MILLISECONDS);
                } catch (TimeoutException e) {
                    // TODO Auto-generated catch block
                    e.printStackTrace();
                }
            } catch (InterruptedException e) {
                e.printStackTrace();
            }catch(BrokenBarrierException e){
                e.printStackTrace();
            }
            System.out.println(Thread.currentThread().getName()+"所有线程写入完毕,继续处理其他任务...");
        }
    }
}

上面的代码在 main 方法的 for 循环中,故意让最后一个线程启动延迟,因为在前面三个线程都达到 barrier 之后,等待了指定的时间发现第四个线程还没有达到 barrier,就抛出异常并继续执行后面的任务.另外 CyclicBarrier 是可以重用的,看下面这个例子:

public class Test {
    public static void main(String[] args) {
        int N = 4;
        CyclicBarrier barrier  = new CyclicBarrier(N);
       
        for(int i=0;i<N;i++) {
            new Writer(barrier).start();
        }
       
        try {
            Thread.sleep(25000);
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
       
        System.out.println("CyclicBarrier重用");
       
        for(int i=0;i<N;i++) {
            new Writer(barrier).start();
        }
    }
    static class Writer extends Thread{
        private CyclicBarrier cyclicBarrier;
        public Writer(CyclicBarrier cyclicBarrier) {
            this.cyclicBarrier = cyclicBarrier;
        }
 
        @Override
        public void run() {
            System.out.println("线程"+Thread.currentThread().getName()+"正在写入数据...");
            try {
                Thread.sleep(5000);      //以睡眠来模拟写入数据操作
                System.out.println("线程"+Thread.currentThread().getName()+"写入数据完毕,等待其他线程写入完毕");
           
                cyclicBarrier.await();
            } catch (InterruptedException e) {
                e.printStackTrace();
            }catch(BrokenBarrierException e){
                e.printStackTrace();
            }
            System.out.println(Thread.currentThread().getName()+"所有线程写入完毕,继续处理其他任务...");
        }
    }
}

从执行结果可以看出,在初次的 4 个线程越过 barrier 状态后,又可以用来进行新一轮的使用.而 CountDownLatch 无法进行重复使用.

Semaphore 用法

Semaphore 翻译成字面意思为信号量,Semaphore 可以控同时访问的线程个数,通过 acquire() 获取一个许可,如果没有就等待,而 release() 释放一个许可.

Semaphore 类位于 java.util.concurrent 包下,它提供了 2 个构造器:

//参数permits表示许可数目,即同时可以允许多少线程进行访问
public Semaphore(int permits) {        
    sync = new NonfairSync(permits);
}
//这个多了一个参数fair表示是否是公平的,即等待时间越久的越先获取许可
public Semaphore(int permits, boolean fair) {  
    sync = (fair)? new FairSync(permits) : new NonfairSync(permits);
}

下面说一下 Semaphore 类中比较重要的几个方法,首先是 acquire()、release()方法:

//获取一个许可
public void acquire() throws InterruptedException {  }
//获取permits个许可
public void acquire(int permits) throws InterruptedException { }
//释放一个许可
public void release() { }
//释放permits个许可
public void release(int permits) { }

acquire()用来获取一个许可,若无许可能够获得,则会一直等待,直到获得许可.

release()用来释放许可.注意,在释放许可之前,必须先获获得许可.

这 4 个方法都会被阻塞,如果想立即得到执行结果,可以使用下面几个方法:

//尝试获取一个许可,若获取成功,则立即返回true,若获取失败,则立即返回false
public boolean tryAcquire() { };
//尝试获取一个许可,若在指定的时间内获取成功,则立即返回true,否则则立即返回false
public boolean tryAcquire(long timeout, TimeUnit unit) throws InterruptedException { };
//尝试获取permits个许可,若获取成功,则立即返回true,若获取失败,则立即返回false
public boolean tryAcquire(int permits) { };
//尝试获取permits个许可,若在指定的时间内获取成功,则立即返回true,否则则立即返回false
public boolean tryAcquire(int permits, long timeout, TimeUnit unit) throws InterruptedException { };

另外还可以通过 availablePermits()方法得到可用的许可数目.

下面通过一个例子来看一下 Semaphore 的具体使用: 假若一个工厂有 5 台机器,但是有 8 个工人,一台机器同时只能被一个工人使用,只有使用完了,其他工人才能继续使用.那么我们就可以通过 Semaphore 来实现:

public class Test {
    public static void main(String[] args) {
        int N = 8;            //工人数
        Semaphore semaphore = new Semaphore(5); //机器数目
        for(int i=0;i<N;i++)
            new Worker(i,semaphore).start();
    }
   
    static class Worker extends Thread{
        private int num;
        private Semaphore semaphore;
        public Worker(int num,Semaphore semaphore){
            this.num = num;
            this.semaphore = semaphore;
        }
       
        @Override
        public void run() {
            try {
                semaphore.acquire();
                System.out.println("工人"+this.num+"占用一个机器在生产...");
                Thread.sleep(2000);
                System.out.println("工人"+this.num+"释放出机器");
                semaphore.release();         
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
        }
    }
}

总结

  • CountDownLatch 和 CyclicBarrier 都能够实现线程之间的等待,只不过它们侧重点不同:
    • CountDownLatch 一般用于某个线程 A 等待若干个其他线程执行完任务之后,它才执行;
    • CyclicBarrier 一般用于一组线程互相等待至某个状态,然后这一组线程再同时执行;
    • CountDownLatch 是不能够重用的,而 CyclicBarrier 是可以重用的;
  • Semaphore 其实和锁有点类似,它一般用于控制对某组资源的访问权限;
  • Java

    Java 是一种可以撰写跨平台应用软件的面向对象的程序设计语言,是由 Sun Microsystems 公司于 1995 年 5 月推出的。Java 技术具有卓越的通用性、高效性、平台移植性和安全性。

    3190 引用 • 8214 回帖 • 1 关注

相关帖子

欢迎来到这里!

我们正在构建一个小众社区,大家在这里相互信任,以平等 • 自由 • 奔放的价值观进行分享交流。最终,希望大家能够找到与自己志同道合的伙伴,共同成长。

注册 关于
请输入回帖内容 ...