什么是垃圾回收机制
自动垃圾回收是一种在堆内存中找出哪些对象在被使用,还有哪些对象没被使用,并且将后者删掉的机制。所谓使用中的对象(已引用对象),指的是程序中有指针指向的对象;而未使用中的对象(未引用对象),则没有被任何指针给指向,因此占用的内存也可以被回收掉。
在用 C 之类的编程语言时,程序员需要自己手动分配和释放内存。而 Java 不一样,它有垃圾回收器,释放内存由回收器负责。本文接下来将介绍垃圾回收机制的基本过程。
第一步:标记
垃圾回收的第一步是标记。垃圾回收器此时会找出哪些内存在使用中,还有哪些不是。
上图中,蓝色表示已引用对象,橙色表示未引用对象。垃圾回收器要检查完所有的对象,才能知道哪些有被引用,哪些没。如果系统里所有的对象都要检查,那这一步可能会相当耗时间。
第二步:清除
这一步会删掉标记出的未引用对象。
内存分配器会保留指向可用内存的引用,以供分配新对象。
压缩
为了提升性能,删除了未引用对象后,还可以将剩下的已引用对象放在一起(压缩),这样就能更简单快捷
为什么需要分代垃圾收集?
之前说过,逐一标记和压缩 Java 虚拟机里的所有对象非常低效:分配的对象越多,垃圾回收需时就越久。不过,根据统计,大部分的对象,其实用没多久就不用了。
来看个例子吧。(下图中,竖轴代表已分配的字节,而横轴代表程序运行时间)
上图可见,存活(没被释放)的对象随运行时间越来越少。而图中左侧的那些峰值,也表明了大部分对象其实都挺短命的。
JVM 分代
根据之前的规律,就可以用来提升 JVM 的效率了。方法是,把堆分成几个部分(就是所谓的分代),分别是新生代、老年代,以及永生代。
新对象会被分配在新生代内存。一旦新生代内存满了,就会开始对死掉的对象,进行所谓的小型垃圾回收过程。一片新生代内存里,死掉的越多,回收过程就越快;至于那些还活着的对象,此时就会老化,并最终老到进入老年代内存。
Stop the World 事件 —— 小型垃圾回收属于一种叫 "Stop the World" 的事件。在这种事件发生时,所有的程序线程都要暂停,直到事件完成(比如这里就是完成了所有回收工作)为止。
老年代用来保存长时间存活的对象。通常,设置一个阈值,当达到该年龄时,年轻代对象会被移动到老年代。最终老年代也会被回收。这个事件成为 Major GC。
Major GC 也会触发 STW(Stop the World)。通常,Major GC 会慢很多,因为它涉及到所有存活对象。所以,对于响应性的应用程序,应该尽量避免 Major GC。还要注意,Major GC 的 STW 的时长受年老代垃圾回收器类型的影响。
永久代包含 JVM 用于描述应用程序中类和方法的元数据。永久代是由 JVM 在运行时根据应用程序使用的类来填充的。此外,Java SE 类库和方法也存储在这里。
如果 JVM 发现某些类不再需要,并且其他类可能需要空间,则这些类可能会被回收。
世代垃圾收集过程
现在你已经理解了为什么堆被分成不同的代,现在是时候看看这些空间是如何相互作用的。 后面的图片将介绍 JVM 中的对象分配和老化过程。
首先,将任何新对象分配给 eden 空间。 两个 survivor 空间都是空的。
当 eden 空间填满时,会触发轻微的垃圾收集。
引用的对象被移动到第一个 survivor 空间。 清除 eden 空间时,将删除未引用的对象。
在下一次 Minor GC 中,Eden 区也会做同样的操作。删除未被引用的对象,并将被引用的对象移动到 Survivor 区。然而,这里,他们被移动到了第二个 Survivor 区(S1)。此外,第一个 Survivor 区(S0)中,在上一次 Minor GC 幸存的对象,会增加年龄,并被移动到 S1 中。待所有幸存对象都被移动到 S1 后,S0 和 Eden 区都会被清空。注意,Survivor 区中有了不同年龄的对象。
在下一次 Minor GC 中,会重复同样的操作。不过,这一次 Survivor 区会交换。被引用的对象移动到 S0,。幸存的对象增加年龄。Eden 区和 S1 被清空。
此幻灯片演示了 promotion。 在较小的 GC 之后,当老化的物体达到一定的年龄阈值(在该示例中为 8)时,它们从年轻一代晋升到老一代。
随着较小的 GC 持续发生,物体将继续被推广到老一代空间。
所以这几乎涵盖了年轻一代的整个过程。 最终,将主要对老一代进行 GC,清理并最终压缩该空间。
欢迎来到这里!
我们正在构建一个小众社区,大家在这里相互信任,以平等 • 自由 • 奔放的价值观进行分享交流。最终,希望大家能够找到与自己志同道合的伙伴,共同成长。
注册 关于