GA 算法

本贴最后更新于 1748 天前,其中的信息可能已经沧海桑田

遗传算法(genetic algorithm)是模拟达尔文生物进化论的自然选择和遗传学机理的生物进化过程计算模型,是一种通过模拟自然进化过程搜索最优解的方法。下面我将分享自己在做GA模型的心得与困惑。

先来整理一下 GA 的基本步骤:

  1. 随机生成一定数量的种群。
  2. 对种群的个体进行编码与评估。
  3. 选用合适的方法对现有种群中的个体做出选择。
  4. 对选择出来的个体进行“交叉”并获得新的个体。
  5. 对下一代进行”突变“操作。

第一步:随机生成一定数量的种群。首先应该构思存储个体的数据结构。我选择的是嵌套的列表(list)。一个个体的形式为[[个体],[编码],评估值],一个种群则是[[[个体1],[编码1],评估值1],[[个体2] ,[编码2],评估值2],[[个体3],[编码3],评估值3],...]。采用随机的方式生成种群/个体:

'''
popnum:单位种群中个体数量,cistern:存储单个种群的数据池,lbound,ubound:个体的取值范围
precision:取值的精度,n:问题的维度
'''
def initpop():
    cistern=[]
    for i in range(popnum):
        particle=[]
        for j in range(n):
            particle.append(round(random.uniform(lbound,ubound),precision))
        cistern.append([particle,[],None])
    return cistern

第二步:选择合适的编码方案以及评估函数。我采用的是经典的二进制编码形式,这样的编码有个好处是可以利用 Python 自带的 bin()函数快速实现,但是一般情况下各个维度的数字是需要编在一起的,而 bin()函数不能保证二进制数值的长度,往往导致在转化较小数字的时候其二进制长度过短,即便是将多个维度编码后的二进制数值简单拼接,我们也需要在拼接处设置标志位,这样才能在“交叉”过后将各维度分开,如果不设标志位而随机分割,那么将会在一定层面上导致“二次交叉”或“自我交叉”,这样便失去了“交叉”的意义,为了解决这一问题我们可以采用 format()函数,也可以对各个维度分别编码,分别“交叉”,在这里我选择后者。对于评估函数,我采用问题本身,即目标函数的函数值。

def D2B(num):  #编码(十进制2二进制)
    return bin(round((num-lbound)*(pow(2,l)-1)/(ubound-lbound)))
	
def B2D(num):  #解码(二进制2十进制)
    return round(lbound+(ubound-lbound)/(pow(2,l)-1)*int(num,2),2)
	
def trans(cistern): #对种群进行二进制编码
    for i in cistern:
        for j in range(n):
            i[1].append(D2B(i[0][j]))
    return cistern
	
def fitness(cistern): #对种群进行评估
    for i in cistern:
        i[2]=fit(i[0])
    return cistern

第三步:选用合适的方法对现有种群中的个体做出选择。个体选择的方法有很多,轮盘赌、 锦标赛选择、排名选择,等。在这里我选择最为简单的轮盘赌。由于函数对于种群池的修改是直接地 所以我将采用“一夫一妻制”,即三个父代个体不能产生两个子代个体,这也是为了避免多余“交叉”。

def select(cistern):
    reservoir=[]
    choice=[]
    resualt={}
    s=0
    for i in cistern:  #将种群中所有的适应值相加
        s=s+i[2]
    for j in cistern:  #求每个个体的占比
        reservoir.append(j[2]/s)
    for k in range(1,popnum):  #求每个个体的累计占比
        reservoir[k]=reservoir[k]+reservoir[k-1]
    reservoir.insert(0,0)   #补充轮盘的开端,设为0
    for c in range(popnum):  #选择次数为种群容量
        r=random.random()    #选择概率
        for t in range(1,len(reservoir)-1):
            if r<reservoir[t] and r>reservoir[t-1]:
                choice.append(t-1)
    for d in set(choice):   #采用字典的方式存储各个个体以及被选中的次数
        resualt[d]=choice.count(d)
    resualt=sorted(resualt.items(), key=lambda item: item[1],reverse=True) #以被选中的次数大小排序
    choice=[]
    for u in resualt:  
      choice.append(u[0])
    return choice #返回选择的结果(下标)

第四步:对选择出来的个体进行“交叉”并获得新的个体。这一步地操作,我采用对原种群直接修改的方式。 对于两个个体的编码,选择一个交叉点位并将交叉点位以及其后面的二进制位一并交换,而且也采用前面提到的分别“交叉”。

def crossover(a,b): #染色体(个体)单位
    ch=random.random()  #交叉概率
    if ch<overchance:
        length=9999999
        for i in a[1]+b[1]:  #对较小长度的二进制选择交叉位作为各个维度的交叉位
            if len(i)<length:
                length=len(i)
        r=random.randint(2,length-1) #选择交叉位
        for j in range(n):  #对二进制数值进行剪切和拼接
            temp=a[1][j][r:]
            a[1][j]=a[1][j][:r]+b[1][j][r:]
            b[1][j]=b[1][j][:r]+temp
            a[0][j]=B2D(a[1][j])  #更改十进制数值
            b[0][j]=B2D(b[1][j])
        a[2]=fit(a[0])    #重新评估函数
        b[2]=fit(b[0])

第五步:对下一代进行”突变“操作。“突变”是此算法中比较简单的流程,一般采用单点变异。

def variation(cistern):
    for i in cistern:
        c=random.random()  #变异概率
        if c<variantchance:  #达成条件进行变异
            m=99999
            for x in i[1]:  #以长度较小的二进制值选择点位
                if len(x)<m:
                    m=len(x)
            r=random.randint(2,m-1) #变异点位
            for j in range(n):    #更换点位的值
                if i[1][j][r]=='0':  
                    i[1][j]=replace_char(i[1][j],'1',r)
                    i[0][j]=B2D(i[1][j]) 
                else:
                    i[1][j]=replace_char(i[1][j],'0',r)
                    i[0][j]=B2D(i[1][j])
                i[2]=fit(i[0]) #重新评估函数
    return cistern

最后进行一下总结,第一步以树的结构存储种群中的个体,第二部采用分别编码,第三步采用“一夫一妻制”选择 并且优先选择被选中次数多的个体进行下一步的操作,第四步采用分别“交叉”,第五步简单变异。剩下还有一些特殊的函数 匹配函数,保持最优函数,目标函数和字符交叉函数。

def replace_char(string,char,index): #单字符交叉,用于“变异”
    string=list(string)
    string[index]=char
    return ''.join(string)
	
def fit(x):  #目标函数,函数值即为适应度。
    value=round(10*math.sin(5*x[0])+7*abs(x[1]-5)+10,precision)
    return value
	
def match(choice):  #匹配函数,防止选选择的个体个数为奇数。
    if len(choice)%2!=0:
        choice.pop()
    return choice
	
def best(cistern,Best):  #最优个体保持函数
    tem=sorted(cistern,key=lambda x:x[2],reverse=True)[0]
    if not Best:
        Best=copy.deepcopy(tem)
    elif tem[2]>Best[2]:
        Best=copy.deepcopy(tem)
    return Best

接下来以上面代码的目标函数对 GA 进行测试:

import math
import random
import copy
popnum=50
ubound=10
lbound=-10
precision=3 
l=0
while pow(2,l)<(ubound-lbound)/(1/pow(10,precision)): #计算所需二进制长度
    l=l+1
n=2 #2-D 
overchance=0.8
variantchance=0.3
Best=[]
a=initpop()
trans(a)
fitness(a)
for j in range(100):
    s=select(a)
    if s:
        c=match(s)
        for i in range(0,len(c),2):
            crossover(a[c[i]],a[c[i+1]])
    variation(a)
    Best=best(a,Best)
    print(Best)

QQ 截图 20200329203944.pngQQ 截图 20200329204003.png

相关帖子

回帖

欢迎来到这里!

我们正在构建一个小众社区,大家在这里相互信任,以平等 • 自由 • 奔放的价值观进行分享交流。最终,希望大家能够找到与自己志同道合的伙伴,共同成长。

注册 关于
请输入回帖内容 ...

推荐标签 标签

  • Angular

    AngularAngularJS 的新版本。

    26 引用 • 66 回帖 • 578 关注
  • AWS
    11 引用 • 28 回帖 • 2 关注
  • Follow
    4 引用 • 13 回帖 • 19 关注
  • webpack

    webpack 是一个用于前端开发的模块加载器和打包工具,它能把各种资源,例如 JS、CSS(less/sass)、图片等都作为模块来使用和处理。

    43 引用 • 130 回帖 • 259 关注
  • CodeMirror
    2 引用 • 17 回帖 • 197 关注
  • 叶归
    25 引用 • 100 回帖 • 37 关注
  • Firefox

    Mozilla Firefox 中文俗称“火狐”(正式缩写为 Fx 或 fx,非正式缩写为 FF),是一个开源的网页浏览器,使用 Gecko 排版引擎,支持多种操作系统,如 Windows、OSX 及 Linux 等。

    7 引用 • 30 回帖 • 367 关注
  • HBase

    HBase 是一个分布式的、面向列的开源数据库,该技术来源于 Fay Chang 所撰写的 Google 论文 “Bigtable:一个结构化数据的分布式存储系统”。就像 Bigtable 利用了 Google 文件系统所提供的分布式数据存储一样,HBase 在 Hadoop 之上提供了类似于 Bigtable 的能力。

    17 引用 • 6 回帖 • 72 关注
  • WordPress

    WordPress 是一个使用 PHP 语言开发的博客平台,用户可以在支持 PHP 和 MySQL 数据库的服务器上架设自己的博客。也可以把 WordPress 当作一个内容管理系统(CMS)来使用。WordPress 是一个免费的开源项目,在 GNU 通用公共许可证(GPLv2)下授权发布。

    46 引用 • 114 回帖 • 139 关注
  • Q&A

    提问之前请先看《提问的智慧》,好的问题比好的答案更有价值。

    11154 引用 • 50649 回帖 • 52 关注
  • Solidity

    Solidity 是一种智能合约高级语言,运行在 [以太坊] 虚拟机(EVM)之上。它的语法接近于 JavaScript,是一种面向对象的语言。

    3 引用 • 18 回帖 • 456 关注
  • SVN

    SVN 是 Subversion 的简称,是一个开放源代码的版本控制系统,相较于 RCS、CVS,它采用了分支管理系统,它的设计目标就是取代 CVS。

    29 引用 • 98 回帖 • 694 关注
  • 尊园地产

    昆明尊园房地产经纪有限公司,即:Kunming Zunyuan Property Agency Company Limited(简称“尊园地产”)于 2007 年 6 月开始筹备,2007 年 8 月 18 日正式成立,注册资本 200 万元,公司性质为股份经纪有限公司,主营业务为:代租、代售、代办产权过户、办理银行按揭、担保、抵押、评估等。

    1 引用 • 22 回帖 • 838 关注
  • Windows

    Microsoft Windows 是美国微软公司研发的一套操作系统,它问世于 1985 年,起初仅仅是 Microsoft-DOS 模拟环境,后续的系统版本由于微软不断的更新升级,不但易用,也慢慢的成为家家户户人们最喜爱的操作系统。

    232 引用 • 484 回帖 • 2 关注
  • golang

    Go 语言是 Google 推出的一种全新的编程语言,可以在不损失应用程序性能的情况下降低代码的复杂性。谷歌首席软件工程师罗布派克(Rob Pike)说:我们之所以开发 Go,是因为过去 10 多年间软件开发的难度令人沮丧。Go 是谷歌 2009 发布的第二款编程语言。

    502 引用 • 1397 回帖 • 239 关注
  • Vditor

    Vditor 是一款浏览器端的 Markdown 编辑器,支持所见即所得、即时渲染(类似 Typora)和分屏预览模式。它使用 TypeScript 实现,支持原生 JavaScript、Vue、React 和 Angular。

    386 引用 • 1892 回帖 • 1 关注
  • App

    App(应用程序,Application 的缩写)一般指手机软件。

    91 引用 • 384 回帖
  • MyBatis

    MyBatis 本是 Apache 软件基金会 的一个开源项目 iBatis,2010 年这个项目由 Apache 软件基金会迁移到了 google code,并且改名为 MyBatis ,2013 年 11 月再次迁移到了 GitHub。

    174 引用 • 414 回帖 • 343 关注
  • 区块链

    区块链是分布式数据存储、点对点传输、共识机制、加密算法等计算机技术的新型应用模式。所谓共识机制是区块链系统中实现不同节点之间建立信任、获取权益的数学算法 。

    92 引用 • 752 回帖
  • SQLite

    SQLite 是一个进程内的库,实现了自给自足的、无服务器的、零配置的、事务性的 SQL 数据库引擎。SQLite 是全世界使用最为广泛的数据库引擎。

    4 引用 • 7 回帖
  • Google

    Google(Google Inc.,NASDAQ:GOOG)是一家美国上市公司(公有股份公司),于 1998 年 9 月 7 日以私有股份公司的形式创立,设计并管理一个互联网搜索引擎。Google 公司的总部称作“Googleplex”,它位于加利福尼亚山景城。Google 目前被公认为是全球规模最大的搜索引擎,它提供了简单易用的免费服务。不作恶(Don't be evil)是谷歌公司的一项非正式的公司口号。

    51 引用 • 200 回帖 • 2 关注
  • 小薇

    小薇是一个用 Java 写的 QQ 聊天机器人 Web 服务,可以用于社群互动。

    由于 Smart QQ 从 2019 年 1 月 1 日起停止服务,所以该项目也已经停止维护了!

    35 引用 • 468 回帖 • 768 关注
  • BookxNote

    BookxNote 是一款全新的电子书学习工具,助力您的学习与思考,让您的大脑更高效的记忆。

    笔记整理交给我,一心只读圣贤书。

    1 引用 • 1 回帖
  • 资讯

    资讯是用户因为及时地获得它并利用它而能够在相对短的时间内给自己带来价值的信息,资讯有时效性和地域性。

    56 引用 • 85 回帖
  • 学习

    “梦想从学习开始,事业从实践起步” —— 习近平

    176 引用 • 544 回帖
  • 程序员

    程序员是从事程序开发、程序维护的专业人员。

    599 引用 • 3541 回帖
  • WiFiDog

    WiFiDog 是一套开源的无线热点认证管理工具,主要功能包括:位置相关的内容递送;用户认证和授权;集中式网络监控。

    1 引用 • 7 回帖 • 633 关注