矩池云上安装 NVCaffe 教程

本贴最后更新于 1333 天前,其中的信息可能已经东海扬尘

使用的是 P100,cuda11.1base 镜像

创建虚拟环境

conda create -n py36 python=3.6 conda deactivate conda activate py36

安装依赖包

apt update apt-get install libopencv-dev libopenblas-dev libopenblas-base libhdf5-dev protobuf-compiler libgoogle-glog-dev libgflags-dev libprotobuf-dev libboost-dev libleveldb-dev liblmdb-dev libturbojpeg0-dev libboost-filesystem-dev libboost-system-dev libboost-thread-dev libboost-regex-dev libsnappy-dev

下载 NVIDIA caffe

cd /home/ # 官方链接wget https://github.com/NVIDIA/caffe/archive/refs/tags/v0.17.4.tar.gz 我这里用了镜像来下载 wget https://download.fastgit.org/NVIDIA/caffe/archive/refs/tags/v0.17.4.tar.gz tar -xvf v0.17.4.tar.gz cd caffe-0.17.4 for req in $(cat python/requirements.txt); do pip install $req; done pip install --upgrade google-api-python-client cp Makefile.config.example Makefile.config

修改 Makefile.config

直接复制进去,保存即可。

## Refer to http://caffe.berkeleyvision.org/installation.html # Contributions simplifying and improving our build system are welcome! # cuDNN acceleration switch (uncomment to build with cuDNN). # cuDNN version 6 or higher is required. USE_CUDNN := 1 # NCCL acceleration switch (uncomment to build with NCCL) # See https://github.com/NVIDIA/nccl USE_NCCL := 1 # Builds tests with 16 bit float support in addition to 32 and 64 bit. # TEST_FP16 := 1 # uncomment to disable IO dependencies and corresponding data layers # USE_OPENCV := 0 # USE_LEVELDB := 0 # USE_LMDB := 0 # Uncomment and set accordingly if you're using OpenCV 3/4 OPENCV_VERSION := 3 # To customize your choice of compiler, uncomment and set the following. # N.B. the default for Linux is g++ and the default for OSX is clang++ # CUSTOM_CXX := g++ # CUDA directory contains bin/ and lib/ directories that we need. CUDA_DIR := /usr/local/cuda # On Ubuntu 14.04, if cuda tools are installed via # "sudo apt-get install nvidia-cuda-toolkit" then use this instead: # CUDA_DIR := /usr # CUDA architecture setting: going with all of them. CUDA_ARCH := -gencode arch=compute_60,code=sm_60 \ -gencode arch=compute_61,code=sm_61 \ -gencode arch=compute_70,code=sm_70 \ -gencode arch=compute_75,code=sm_75 \ -gencode arch=compute_75,code=compute_75 # BLAS choice: # atlas for ATLAS # mkl for MKL # open for OpenBlas - default, see https://github.com/xianyi/OpenBLAS BLAS := open # Custom (MKL/ATLAS/OpenBLAS) include and lib directories. BLAS_INCLUDE := /opt/OpenBLAS/include/ BLAS_LIB := /opt/OpenBLAS/lib/ # Homebrew puts openblas in a directory that is not on the standard search path # BLAS_INCLUDE := $(shell brew --prefix openblas)/include # BLAS_LIB := $(shell brew --prefix openblas)/lib # This is required only if you will compile the matlab interface. # MATLAB directory should contain the mex binary in /bin. # MATLAB_DIR := /usr/local # MATLAB_DIR := /Applications/MATLAB_R2012b.app # NOTE: this is required only if you will compile the python interface. # We need to be able to find Python.h and numpy/arrayobject.h. #PYTHON_INCLUDE := /usr/include/python2.7 \ # /usr/lib/python2.7/dist-packages/numpy/core/include # Anaconda Python distribution is quite popular. Include path: # Verify anaconda location, sometimes it's in root. # ANACONDA_HOME := $(HOME)/anaconda # PYTHON_INCLUDE := $(ANACONDA_HOME)/include \ # $(ANACONDA_HOME)/include/python2.7 \ # $(ANACONDA_HOME)/lib/python2.7/site-packages/numpy/core/include \ # Uncomment to use Python 3 (default is Python 2) PYTHON_LIBRARIES := boost_python3 python3.6m PYTHON_INCLUDE := /root/miniconda3/envs/py36/include/python3.6m \ /root/miniconda3/envs/py36/lib/python3.6/site-packages/numpy/core/include # We need to be able to find libpythonX.X.so or .dylib. PYTHON_LIB := /root/miniconda3/envs/py36/lib # PYTHON_LIB := $(ANACONDA_HOME)/lib # Homebrew installs numpy in a non standard path (keg only) # PYTHON_INCLUDE += $(dir $(shell python -c 'import numpy.core; print(numpy.core.__file__)'))/include # PYTHON_LIB += $(shell brew --prefix numpy)/lib # Uncomment to support layers written in Python (will link against Python libs) WITH_PYTHON_LAYER := 1 # Whatever else you find you need goes here. INCLUDE_DIRS := $(PYTHON_INCLUDE) /usr/local/include /usr/include/hdf5/serial LIBRARY_DIRS := $(PYTHON_LIB) /usr/local/lib /usr/lib /usr/lib/x86_64-linux-gnu/hdf5/serial # If Homebrew is installed at a non standard location (for example your home directory) and you use it for general dependencies # INCLUDE_DIRS += $(shell brew --prefix)/include # LIBRARY_DIRS += $(shell brew --prefix)/lib # Uncomment to use `pkg-config` to specify OpenCV library paths. # (Usually not necessary -- OpenCV libraries are normally installed in one of the above $LIBRARY_DIRS.) # USE_PKG_CONFIG := 1 BUILD_DIR := build DISTRIBUTE_DIR := distribute # Uncomment for debugging. Does not work on OSX due to https://github.com/BVLC/caffe/issues/171 # DEBUG := 1 # The ID of the GPU that 'make runtest' will use to run unit tests. TEST_GPUID := 0 # enable pretty build (comment to see full commands) Q ?= @ # shared object suffix name to differentiate branches LIBRARY_NAME_SUFFIX := -nv

想自己找到上面修改的路径,可以使用下面的命令查找

python -c "from distutils.sysconfig import get_python_inc; print(get_python_inc())" python -c "import distutils.sysconfig as sysconfig; print(sysconfig.get_config_var('LIBDIR'))" find /root/miniconda3/envs/py36/lib/ -name numpy

设置环境变量

export PYTHONPATH=/home/caffe-0.17.4/python/:$PYTHONPATH export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/root/miniconda3/envs/py36/lib

开始编译

make clean make all -j12 make pycaffe -j12

使用 python 环境测试

python
import caffe caffe.set_mode_gpu() caffe.__version__

使用官方 examples 测试

#!/usr/bin/env sh # This scripts downloads the mnist data and unzips it. DIR="$( cd "$(dirname "$0")" ; pwd -P )" cd $DIR echo "Downloading..." for fname in train-images-idx3-ubyte train-labels-idx1-ubyte t10k-images-idx3-ubyte t10k-labels-idx1-ubyte do if [ ! -e $fname ]; then wget --no-check-certificate https://storage.googleapis.com/cvdf-datasets/mnist/${fname}.gz gunzip ${fname}.gz fi done

./data/mnist/get_mnist.sh ./examples/mnist/create_mnist.sh ./examples/mnist/train_lenet.sh

查看显存使用率

nvidia-smi -l 5

参考文章

https://stackoverflow.com/questions/36183486/importerror-no-module-named-google

https://stackoverflow.com/questions/28190534/windows-scipy-install-no-lapack-blas-resources-found/29860484#29860484

Issue #1114 · xianyi/OpenBLAS

https://pypi.org/project/scipy/0.17.0/

https://github.com/NVIDIA/caffe/releases/tag/v0.17.4

  • Caffe
    1 引用
  • NVCaffe
    1 引用
  • 矩池云
    21 引用 • 2 回帖
  • 机器学习

    机器学习(Machine Learning)是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。

    83 引用 • 37 回帖

相关帖子

欢迎来到这里!

我们正在构建一个小众社区,大家在这里相互信任,以平等 • 自由 • 奔放的价值观进行分享交流。最终,希望大家能够找到与自己志同道合的伙伴,共同成长。

注册 关于
请输入回帖内容 ...