descem

本贴最后更新于 730 天前,其中的信息可能已经时过境迁

Example in Early Breast Cancer

原理

模型系统基于一系列事件流(如疾病恶化、进展、终止治疗等)的发生时间

事件以离散的间隔在时间轴上向前移动

患者以相关的属性信息(如接受不同的治疗)作为个体进入模拟

image

核心步骤

  • 参数确定(Parameters)

    • 模拟期间的共同参数(common within simulation,如费用 cost)
    • 不同治疗间患者的共同参数(common for a patient across interventions,如患者特征)
    • 每个患者和治疗的特定参数(specific to each patient and intervention)
  • 初始事件和到事件的时间(Initial events and time to event)

  • 事件关系(相互作用)的指定(Declaration of reaction to each event)

  • 效用和费用(Utilities and costs(optional))

  • 运行模型和结果输出

模型引擎:循环描述和执行顺序

四重循环

  • 每次模拟(PSA)
  • 每个患者
  • 每种治疗
  • 每个事件

对于每个事件,计算先前和当前事件之间的折扣 qalys/lys/成本,然后添加/更新反应中定义的事件/项目

image

参数说明

一般输入

#Put objects here that do not change on any patient or intervention loop common_all_inputs <-add_item( util.sick = 0.8, util.sicker = 0.5, cost.sick = 3000, cost.sicker = 7000, cost.int = 1000, coef_noint = log(0.2), HR_int = 0.8) # Utilities:效用,健康=1.0,sick=0.8,sicker=0.5,death=0 #Put objects here that do not change as we loop through treatments for a patient common_pt_inputs <- add_item(death= max(0.0000001,rnorm(n=1, mean=12, sd=3))) #Put objects here that change as we loop through treatments for each patient (e.g. events can affect fl.tx, but events do not affect nat.os.s) unique_pt_inputs <- add_item(fl.sick = 1)

add_item()

定义模型中用于计算的参数。

add_item(.data = NULL, ...)

add_item(util_idfs = if(psa_bool){rnorm(1,0.8,0.2)} else{0.8}, util.mbc = 0.6, cost_idfs = 2500)

add_tte()

定义事件和初始事件时间,每种治疗分开定义。

add_tte(.data = NULL, trt, evts, other_inp = NULL, input)

trt​:事件对应的干预/治疗

evts​:事件向量,需要通过 add_reactevt()​向事件添加变化及需要的计算

other_inp​:模拟期间要保存的其他变量

input​:evts 参数中列出事件初始事件时间

init_event_list <- add_tte(trt="noint", evts = c("sick","sicker","death") ,input={ sick <- 0 sicker <- draw_tte(1,dist="exp", coef1=coef_noint)}) %>% add_tte(trt="int", evts = c("sick","sicker","death") ,input={ sick <- 0 sicker <- draw_tte(1,dist="exp", coef1=coef_noint, hr = HR_int)})

在 init_event_list 中定义 2 种治疗,每种治疗 3 个事件,c("sick","sicker","death")

trt="noint"​中 sick​的初始时间为 0,sicker​的初始时间服从参数为 coef_noint(log(0.2)​)指数分布

trt="int"​中 sick​的初始时间为 0,sicker​的初始时间服从 HR=HR_int(0.8)的相对于参数为 coef_noint(log(0.2)​)指数分布

draw_tte()

通过一系列生存函数参数刻画事件时间。

draw_tte(n_chosen = 1,dist = "exp",coef1 = 1,coef2 = NULL,coef3 = NULL,hr = 1,seed = NULL)

n_chosen​:observations 数

dist​:分布类型,可以有'lnorm','weibullPH','weibull','llogis','gompertz','gengamma','gamma','exp'

coef1​:分布的第一个系数,在 coef()中定义,在 flexsurvreg 对象中输出

coef2​:分布的第二个系数

coef3​:分布的第三个系数

hr​:风险比

seed​:模拟用种子数

draw_tte(n_chosen=1,dist='exp',coef1=1,hr=1)

add_reactevt()

定义事件发生对其他事件、费用、效用或 item 的影响。

add_reactevt(.data = NULL, name_evt, input)

name_evt​:发生 reactions 的事件名称

input​:事件发生时 reactions 的表达式

  • modify_item()​:增加、修改 items/flags/variables
  • new_event()​:添加事件
  • modify_event()​:用过时间修改已存在的事件

另外有标准变量

curtime​:当前时间

prevtime​:前一个事件的时间

cur_evtlist​:患者尚未发生的事件

evt​:当前执行的事件

i​:患者号

simulation​:正在迭代的模拟

模型将一直运行直到 curtime​设为 Inf​,因此终止模型的事件应该修改 curtime 并将其设置为 Inf

建议将添加/修改的一类 inputs/events 作为一个 list 以 group 形式在函数中处理,而不是一个一个单独处理。

添加事件(new_event​)/修改事件(modify_event​)时,必须定义或指明事件的名称和发生时间。

evt_react_list <- add_reactevt(name_evt = "sick", input = {}) %>% add_reactevt(name_evt = "sicker", input = {modify_item(list(fl.sick = 0))}) %>% add_reactevt(name_evt = "death", input = {modify_item(list(curtime = Inf))})

add_util()

定义事件和治疗的效用。

add_util(.data = NULL, util, evt, trt, cycle_l = NULL, cycle_starttime = 0)

util​:用来计算效用估计的值或表达式

evt​:效用对应的事件

trt​:效用对应的治疗

cycle_l​:Cycle 长度,效用按 cycle 计算时会用到

cycle_starttime​:效用开始计算的时间,效用按 cycle 计算时会用到

util_ongoing <- add_util(evt = c("sick", "sicker","death"), trt = c("int", "noint"), util = util.sick * fl.sick + util.sicker * (1-fl.sick))

add_cost()

定义事件和治疗的费用。

add_cost(.data = NULL, cost, evt, trt, cycle_l = NULL, cycle_starttime = 0)

cost​:用来计算费用估计的值或表达式

evt​:费用对应的事件

trt​:费用对应的治疗

cycle_l​:Cycle 长度,费用按 cycle 计算时会用到

cycle_starttime​:费用开始计算的时间,费用按 cycle 计算时会用到

RunSim()

运行模拟。

RunSim( trt_list = c("int", "noint"), common_all_inputs = NULL, common_pt_inputs = NULL, unique_pt_inputs = NULL, init_event_list = NULL, evt_react_list = evt_react_list, util_ongoing_list = NULL, util_instant_list = NULL, util_cycle_list = NULL, cost_ongoing_list = NULL, cost_instant_list = NULL, cost_cycle_list = NULL, npats = 500, n_sim = 1, psa_bool = NULL, ncores = 1, drc = 0.035, drq = 0.035, input_out = NULL, ipd = TRUE, debug = FALSE )

trt_list​:治疗的向量

common_all_inputs​:患者总体参数

common_pt_inputs​:治疗间患者参数(not affected by the intervention)

unique_pt_inputs​:治疗内患者参数(change across each intervention)

init_event_list:​初始事件和时间

evt_react_list:​事件交互列表

util_ongoing_list:​持续事件的效用列表(at an ongoing basis)

util_instant_list:​临时事件的效用列表(accrued instantaneously at an event)

util_cycle_list:​cycles 内效用

cost_ongoing_list:​持续事件的费用列表(at an ongoing basis)

cost_instant_list:​临时事件的费用列表(accrued instantaneously at an event)

cost_cycle_list:​cycles 内费用

npats:​模拟的患者数

n_sim:​每个患者模拟数

psa_bool:​是否执行 PSA

drc:​成本折扣率

drq:​LYs/QALYs 的折扣率

ipd:​用于确定是否应返回单个患者数据的布尔值,如果设置为 false,则只返回主要的聚合输出(稍微加快代码速度)

debug:​用于确定是否应使用非并行 RunEngine 函数,这有助于调试

results <- RunSim( npats=1000, # number of patients to be simulated n_sim=1, # number of simulations to run psa_bool = FALSE, # use PSA or not. If n_sim > 1 and psa_bool = FALSE, then difference in outcomes is due to sampling (number of pats simulated) trt_list = c("int", "noint"), # intervention list common_all_inputs = common_all_inputs, # inputs common that do not change within a simulation common_pt_inputs = common_pt_inputs, # inputs that change within a simulation but are not affected by the intervention unique_pt_inputs = unique_pt_inputs, # inputs that change within a simulation between interventions init_event_list = init_event_list, # initial event list evt_react_list = evt_react_list, # reaction of events util_ongoing_list = util_ongoing, cost_ongoing_list = cost_ongoing, ncores = 2, # number of cores to use, recommended not to use all drc = 0.035, # discount rate for costs drq = 0.035 # discount rate for qaly/lys ) ############################################################# int noint costs 54560.04 52079.85 lys 9.69 9.69 qalys 6.17 6.03 ICER NA Inf ICUR NA 17043.56

summary_results_det()

summary_results_psa()

summary_results_det(out = final_output, trt = NULL)

summary_results_psa(out = output_psa, trt = NULL)​会得到置信区间

out​:RunSim()​的结果中的 final_output​数据

trt​:设定参照治疗

summary_results_det(results$final_output) summary_results_psa(results$output_psa) psa_ipd <- bind_rows(map(results$output_psa, "merged_df")) psa_ipd[1:10,] %>% kable() %>% kable_styling(bootstrap_options = c("striped", "hover", "condensed", "responsive"))
evtname evttime cost qaly ly pat_id trt total_costs total_qalys total_lys simulation
sick 0.0000000 0.000 0.0000000 0.0000000 1 int 73626.16 5.475675 10.698576 1
sicker 0.4243738 1685.164 0.3370329 0.4212911 1 int 73626.16 5.475675 10.698576 1
death 13.3406999 71940.994 5.1386424 10.2772848 1 int 73626.16 5.475675 10.698576 1
sick 0.0000000 0.000 0.0000000 0.0000000 2 int 33429.94 4.655493 6.665406 1
sicker 4.7819160 17637.206 3.5274411 4.4093014 2 int 33429.94 4.655493 6.665406 1
death 7.5710636 15792.730 1.1280521 2.2561043 2 int 33429.94 4.655493 6.665406 1
sick 0.0000000 0.000 0.0000000 0.0000000 3 int 77087.01 6.584838 11.911283 1
sicker 2.1768321 8389.288 1.6778575 2.0973219 3 int 77087.01 6.584838 11.911283 1
death 15.3259546 68697.724 4.9069803 9.8139605 3 int 77087.01 6.584838 11.911283 1
sick 0.0000000 0.000 0.0000000 0.0000000 4 int 41007.00 8.201399 10.251749 1

示例

Model Concept

image

一般输入

#Utilities util.data <- data.frame(name = c("util.idfs.ontx" ,"util.idfs.offtx" ,"util.remission" ,"util.recurrence" ,"util.mbc.progression.mbc" ,"util.mbc.pps"), value = c(0.75, 0.8,0.9,0.7,0.6,0.5), se=rep(0.02,6), stringsAsFactors = FALSE) cost.data <- data.frame(name = c("cost.idfs.tx" ,"cost.recurrence" ,"cost.mbc.tx" ,"cost.tx.beva" ,"cost.idfs.txnoint", "cost.idfs","cost.mbc.progression.mbc","cost.mbc.pps","cost.2ndline","cost.ae"), value = c(40000,5000,3000,10000,30000,10000,20000,30000,20000,1000),stringsAsFactors = FALSE) %>% mutate(se= value/5)

定义模型模拟需要的初始 inputs 和 flag,可以定义

  • 针对所有患者的输入(common_all_inputs​)
  • 某种治疗中的特定独立患者(common_pt_inputs​)
  • 特定治疗的特定患者(unique_pt_inputs

通过 add_item​函数添加 item,并在之后的 items 中使用。所有输入都在执行事件和对事件的反应之前定义完成。

程序首先执行 common_all_inputs​,之后 common_pt_inputs​,然后 unique_pt_inputs​。

fl.remission​flag 刻画了概率为 0.8 的伯努利分布,表示 80% 的患者 remission,20% 的患者进展为 early metastatic BC。也可以使用至 remission 和至进展为 mBC 两种状态的的较短时间来建模。

定义状态(utilities)和 cost 的 vector,之后分配给每个指定的 item。

模型中运行的 items(如 util.remission​)是 unnamed。It is strongly recommended to assign unnamed objects if they are going to be processed in the model. In this case, we’re only using util_v and cost_v as an intermediate input and these objects will not be processed。

#Each patient is identified through "i" #Items used in the model should be unnamed numeric/vectors! otherwise if they are processed by model it can lead to strangely named outcomes #In this case, util_v is a named vector, but it's not processed by the model. We extract unnamed numerics from it. #Put objects here that do not change on any patient or intervention loop common_all_inputs <- add_item( #utilities util_v = if(psa_bool){ setNames(MASS::mvrnorm(1,util.data$value,diag(util.data$se^2)),util.data$name) #in this case I choose a multivariate normal with no correlation } else{setNames(util.data$value,util.data$name)}, util.idfs.ontx = util_v[["util.idfs.ontx"]], util.idfs.offtx = util_v[["util.idfs.offtx"]], util.remission = util_v[["util.remission"]], util.recurrence = util_v[["util.recurrence"]], util.mbc.progression.mbc = util_v[["util.mbc.progression.mbc"]], util.mbc.pps = util_v[["util.mbc.pps"]] ) %>% add_item( #costs cost_v = if(psa_bool){ setNames(draw_gamma(cost.data$value,cost.data$se),cost.data$name) #in this case I choose a gamma distribution } else{setNames(cost.data$value,cost.data$name)}, cost.idfs.tx = cost_v[["cost.idfs.tx"]], cost.recurrence = cost_v[["cost.recurrence"]], cost.mbc.tx = cost_v[["cost.mbc.tx"]], cost.tx.beva = cost_v[["cost.tx.beva"]], cost.idfs.txnoint = cost_v[["cost.idfs.txnoint"]], cost.idfs = cost_v[["cost.idfs"]], cost.mbc.progression.mbc = cost_v[["cost.mbc.progression.mbc"]], cost.mbc.pps = cost_v[["cost.mbc.pps"]], cost.2ndline = cost_v[["cost.2ndline"]], cost.ae = cost_v[["cost.ae"]] ) #Put objects here that do not change as we loop through interventions for a patient common_pt_inputs <- add_item(sex_pt = ifelse(rbernoulli(1,p=0.01),"male","female"), nat.os.s = draw_resgompertz(1, shape=if(sex_pt=="male"){0.102}else{0.115}, rate=if(sex_pt=="male"){0.000016}else{0.0000041}, lower_bound = 50) ) #in years, for a patient who is 50yo #Put objects here that change as we loop through treatments for each patient (e.g. events can affect fl.tx, but events do not affect nat.os.s) #common across trt but changes per pt could be implemented here (if (trt==)... ) unique_pt_inputs <- add_item( fl.idfs.ontx = 1, fl.idfs = 1, fl.mbcs.ontx = 1, fl.mbcs.progression.mbc = 1, fl.tx.beva = 1, fl.mbcs = 0, fl.mbcs_2ndline = 0, fl.recurrence = 0, fl.remission = rbernoulli(1,0.8) #80% probability of going into remission )

事件(Events)

添加初始事件

通过 add_tte​函数添加事件,每种治疗使用一次 add_tte​函数。

需要定义多个参数:

  • one to indicate the intervention
  • one to define the names of the events used
  • one to define the names of other objects ​created that would like to store (optional, maybe we generate an intermediate input which is not an event but that we want to save)

事件和其他对象将自动初始化为 Inf​。

init_event_list​对象是通过使用 add_tte​函数两次来填充的,一个是针对“int”策略,另一个则是针对“noint”策略。首先声明开始时间为 0。

通过 draw_tte()​函数生成目标事件的发生时间

示例中事件的初始 list 为 start, ttot, ttot.beva, progression.mbc, os, idfs, ttot.early, remission, recurrence and start.early.mbc​。其他非初始化的事件可以在 reactions part 定义。

init_event_list <- add_tte(trt="int", evts = c("start","ttot", "ttot.beva","progression.mbc", "os","idfs","ttot.early","remission","recurrence","start.early.mbc"), other_inp = c("os.early","os.mbc"), input={ #intervention start <- 0 #Early idfs <- draw_tte(1,'lnorm',coef1=2, coef2=log(0.2)) ttot.early <- min(draw_tte(1,'lnorm',coef1=2, coef2=log(0.2)),idfs) ttot.beva <- draw_tte(1,'lnorm',coef1=2, coef2=log(0.2)) os.early <- draw_tte(1,'lnorm',coef1=3, coef2=log(0.2)) #if patient has remission, check when will recurrence happen if (fl.remission) { recurrence <- idfs +draw_tte(1,'lnorm',coef1=2, coef2=log(0.2)) remission <- idfs #if recurrence happens before death if (min(os.early,nat.os.s)>recurrence) { #Late metastatic (after finishing idfs and recurrence) os.mbc <- draw_tte(1,'lnorm',coef1=0.8, coef2=log(0.2)) + idfs + recurrence progression.mbc <- draw_tte(1,'lnorm',coef1=0.5, coef2=log(0.2)) + idfs + recurrence ttot <- draw_tte(1,'lnorm',coef1=0.5, coef2=log(0.2)) + idfs + recurrence } } else{ #If early metastatic start.early.mbc <- draw_tte(1,'lnorm',coef1=2.3, coef2=log(0.2)) idfs <- ifelse(start.early.mbc<idfs,start.early.mbc,idfs) ttot.early <- min(ifelse(start.early.mbc<idfs,start.early.mbc,idfs),ttot.early) os.mbc <- draw_tte(1,'lnorm',coef1=0.8, coef2=log(0.2)) + start.early.mbc progression.mbc <- draw_tte(1,'lnorm',coef1=0.5, coef2=log(0.2)) + start.early.mbc ttot <- draw_tte(1,'lnorm',coef1=0.5, coef2=log(0.2)) + start.early.mbc } os <- min(os.mbc,os.early,nat.os.s) }) %>% add_tte(trt="noint", evts = c("start","ttot", "ttot.beva","progression.mbc", "os","idfs","ttot.early","remission","recurrence","start.early.mbc"), other_inp = c("os.early","os.mbc"), input={ #reference strategy start <- 0 #Early idfs <- draw_tte(1,'lnorm',coef1=2, coef2=log(0.2),hr=1.2) ttot.early <- min(draw_tte(1,'lnorm',coef1=2, coef2=log(0.2),hr=1.2),idfs) os.early <- draw_tte(1,'lnorm',coef1=3, coef2=log(0.2),hr=1.2) #if patient has remission, check when will recurrence happen if (fl.remission) { recurrence <- idfs +draw_tte(1,'lnorm',coef1=2, coef2=log(0.2)) remission <- idfs #if recurrence happens before death if (min(os.early,nat.os.s)>recurrence) { #Late metastatic (after finishing idfs and recurrence) os.mbc <- draw_tte(1,'lnorm',coef1=0.8, coef2=log(0.2)) + idfs + recurrence progression.mbc <- draw_tte(1,'lnorm',coef1=0.5, coef2=log(0.2)) + idfs + recurrence ttot <- draw_tte(1,'lnorm',coef1=0.5, coef2=log(0.2)) + idfs + recurrence } } else{ #If early metastatic start.early.mbc <- draw_tte(1,'lnorm',coef1=2.3, coef2=log(0.2)) idfs <- ifelse(start.early.mbc<idfs,start.early.mbc,idfs) ttot.early <- min(ifelse(start.early.mbc<idfs,start.early.mbc,idfs),ttot.early) os.mbc <- draw_tte(1,'lnorm',coef1=0.8, coef2=log(0.2)) + start.early.mbc progression.mbc <- draw_tte(1,'lnorm',coef1=0.5, coef2=log(0.2)) + start.early.mbc ttot <- draw_tte(1,'lnorm',coef1=0.5, coef2=log(0.2)) + start.early.mbc } os <- min(os.mbc,os.early,nat.os.s) })

添加事件反应

定义好事件的初始时间后,需要指定事件如何反应以及相互影响,需要使用 evt_react_list​对象和 add_reactevt​函数。这个函数需要指明受影响的事件和实际的影响(usually setting flags to 1 or 0, or creating new/adjusting events)。示例中添加一个服从 Possion 分布的不良事件,以及对特定事件的修改(如通过从每个不良事件中减去 1.5 个月来修改死亡时间)。

可以使用以下对象帮助理解事件的发生:

Item What does it do
curtime Current event time (numeric)
prevtime Time of the previous event (numeric)
cur_evtlist Named vector of events that is yet to happen for that patient (named numeric vector)
evt Current event being processed (character)
i Patient being iterated (character)
simulation Simulation being iterated (numeric)

建议将添加/修改的一类 inputs/events 作为一个 list 以 group 形式在函数中处理,而不是一个一个单独处理。

添加事件(new_event​)/修改事件(modify_event​)时,必须定义或指明事件的名称和发生时间。

add_reactevt​可使用的函数如下:

Function What does it do How to use it
modify_item() Adds & Modifies items/flags/variables for future events modify_item(list("fl.idfs.ontx"=0,"fl.tx.beva"=0))
new_event() Adds events to the vector of events for that patient new_event(rep(list("ae"=curtime + 0.001),5))
modify_event() Modifies existing events by changing their time modify_event(list("os"=curtime +5, "ttot"=curtime+0.0001))

成本和效用(Costs and Utilities)

需注意,模型不考虑成本和效用运行是没有意义的。

效用

使用 add_util​函数定义效用。第一个参数指定事件,第二个指定治疗,第三个描述效用。

临时效用和循环效用可以使用相同的函数定义,但是循环效用需要指定开始时间和 cycle length。

成本

使用 add_cost​函数定义成本。

运行模型

使用 RunSim​函数运行模型。需要指定模拟患者数、模拟次数、是否 run a PSA 等。

请注意,所选择的分布、事件数量以及事件之间的交互可能会对模型的运行时间产生重大影响。

#Logic is: per patient, per intervention, per event, react to that event. results <- RunSim( npats=2000, # number of patients to be simulated n_sim=1, # number of simulations to run psa_bool = FALSE, # use PSA or not. If n_sim > 1 and psa_bool = FALSE, then difference in outcomes is due to sampling (number of pats simulated) trt_list = c("int", "noint"), # intervention list common_all_inputs = common_all_inputs, # inputs common that do not change within a simulation common_pt_inputs = common_pt_inputs, # inputs that change within a simulation but are not affected by the intervention unique_pt_inputs = unique_pt_inputs, # inputs that change within a simulation between interventions init_event_list = init_event_list, # initial event list evt_react_list = evt_react_list, # reaction of events util_ongoing_list = util_ongoing, cost_ongoing_list = cost_ongoing, cost_instant_list = cost_instant, ncores = 2, # number of cores to use, recommended not to use all drc = 0.035, # discount rate for costs drq = 0.035, # discount rate for QALYs input_out = c( # list of additional outputs (Flags, etc) that the user wants to export for each patient and event "os.early", "os.mbc", "nat.os.s", "sex_pt" ) ) #> [1] "Simulation number: 1" #> Warning in RunSim(npats = 2000, n_sim = 1, psa_bool = FALSE, trt_list = #> c("int", : Item util_v is named. It is strongly advised to assign unnamed #> objects if they are going to be processed in the model, as they can create #> errors depending on how they are used within the model #> Warning in RunSim(npats = 2000, n_sim = 1, psa_bool = FALSE, trt_list = #> c("int", : Item cost_v is named. It is strongly advised to assign unnamed #> objects if they are going to be processed in the model, as they can create #> errors depending on how they are used within the model #> [1] "Time to run iteration 1: 10.45s" #> [1] "Total time to run: 10.45s"

模型输出

结果汇总

可以使用 summary_results_det​输出结果,summary_results_psa​战士 PSA 结果,可以使用 psa_ipd​来绘图。

summary_results_det(results$final_output) #will print the last simulation! #> int noint #> costs 365317.90 267967.54 #> lys 12.99 11.83 #> qalys 9.82 8.97 #> ICER NA 84062.52 #> ICUR NA 114046.28 summary_results_psa(results$output_psa) #> int noint #> costs 365318(365318, 365318) 267968(267968, 267968) #> lys 12.99(12.99, 12.99) 11.83(11.83, 11.83) #> qalys 9.82(9.82, 9.82) 8.97(8.97, 8.97) #> ICER NaN(NA, NA) 84063(84063, 84063) #> ICUR NaN(NA, NA) 114046(114046, 114046) psa_ipd <- bind_rows(map(results$output_psa, "merged_df")) psa_ipd[1:10,] %>% kable() %>% kable_styling(bootstrap_options = c("striped", "hover", "condensed", "responsive"))
evtname evttime cost qaly ly pat_id trt sex_pt nat.os.s os.early os.mbc total_costs total_qalys total_lys simulation
start 0.000000 0.0000 0.0000000 0.0000000 1 int female 24.56429 17.0136 21.89380 414422.3 10.23653 12.87903 1
idfs 6.070305 328703.5455 4.1087943 5.4783924 1 int female 24.56429 17.0136 21.89380 414422.3 10.23653 12.87903 1
ttot.early 6.070305 0.0000 0.0000000 0.0000000 1 int female 24.56429 17.0136 21.89380 414422.3 10.23653 12.87903 1
remission 6.070305 0.0000 0.0000000 0.0000000 1 int female 24.56429 17.0136 21.89380 414422.3 10.23653 12.87903 1
ttot.beva 8.579367 44868.1706 1.7557110 1.9507900 1 int female 24.56429 17.0136 21.89380 414422.3 10.23653 12.87903 1
recurrence 13.987665 0.0000 3.3063563 3.6737292 1 int female 24.56429 17.0136 21.89380 414422.3 10.23653 12.87903 1
os 17.013600 40850.6180 1.0656683 1.7761138 1 int female 24.56429 17.0136 21.89380 414422.3 10.23653 12.87903 1
start 0.000000 0.0000 0.0000000 0.0000000 2 int female 41.83077 19.2660 30.33222 379474.4 11.93604 14.02155 1
ttot.early 5.877182 319268.6445 3.9908581 5.3211441 2 int female 41.83077 19.2660 30.33222 379474.4 11.93604 14.02155 1
ae 5.877282 816.9422 0.0000817 0.0000817 2 int female 41.83077 19.2660 30.33222 379474.4 11.93604 14.02155 1

绘图

data_plot <- results$final_output$merged_df %>% # mutate(evttime = ifelse(evttime > 99, NA, evttime)) %>% filter(evtname != "start") %>% group_by(trt,evtname,simulation) %>% mutate(median = median(evttime)) %>% ungroup() #Density ggplot(data_plot) + geom_density(aes(fill = trt, x = evttime), alpha = 0.7) + geom_vline(aes(xintercept=median,col=trt)) + facet_wrap( ~ evtname, scales = "free_y") + scale_y_continuous(expand = c(0, 0)) + scale_x_continuous(expand = c(0, 0)) + theme_bw()

https://roche.github.io/descem/articles/example_ipd.html

ifelse(!"pacman" %in% installed.packages(),install.packages("pacman"),library(pacman)) p_load("descem","tidyverse","survival","survminer","flexsurv","flexsurvPlus","kableExtra") #Define variables that do not change on any patient or intervention loop common_all_inputs <- add_item( #Parameters from the survival models OS.scale = 3.1523, OS.shape = 1.1346, OS.coef.int = 0.3066, #Intervention effect # TTP.scale = as.numeric(TTP.fit$coef[2]), # TTP.shape = as.numeric(TTP.fit$coef[1]), # TTP.coef.int = as.numeric(TTP.fit$coef[3]), #Intervention effect TTP.scale = 0.5865, TTP.shape = 1.3757, TTP.coef.int = 1.0992, #Intervention effect #Utilities util.PFS = 0.6, #Utility while in progression-free state util.PPS = 0.4, #Utility while in progressed state disutil.PAE = -0.02, #One-off disutility of progression-accelerating event #Costs cost.drug.int = 85000, #Annual intervention cost cost.drug.ref = 29000, #Annual cost of reference treatment cost.admin.SC = 150, #Unit cost for each SC administration cost.admin.oral = 300, #One-off cost for oral administration cost.dm.PFS = 3000, #Annual disease-management cost in progression-free state cost.dm.PPS = 5000, #Annual disease-management cost in progressed state cost.ae.int = 2200, #Annual adverse event costs for intervention cost.ae.ref = 1400, #Annual adverse event costs for reference treatment ) #Define variables that do not change as we loop through interventions for a patient common_pt_inputs <- add_item( #Patient baseline characteristics Sex = rbinom(500,1,0.5), #Record sex of individual patient. 0 = Female; 1 =Male BLAge = rnorm(500,60,8), #Record patient age at baseline #Draw time to non-disease related death from a restricted Gompertz distribution nat.death = draw_resgompertz(1,shape=if(Sex == 1){0.102}else{0.115}, rate=if(Sex == 1){0.000016}else{0.0000041}, lower_bound = BLAge) # Baseline Age in years ) #Define variables that change as we loop through treatments for each patient. unique_pt_inputs <- add_item( fl.int = 0, #Flag to determine if patient is on intervention. Initialized as 0, but will be changed to current arm in the Start event. fl.prog = 0, #Flag to determine if patient has progressed. All patients start progression-free fl.ontx = 1, #Flag to determine if patient is on treatment. All patients start on treatment fl.PAE = 0, #Flag to determine if progression-accelerating event occurred pfs.time = NA #Recording of time at progression ) init_event_list <- #Events applicable to intervention add_tte(trt="int", evts = c("Start","TxDisc","Progression","PAE","Death"), input={ Start <- 0 Progression <- draw_tte(1,'weibull',coef1=TTP.shape, coef2= TTP.scale + TTP.coef.int, seed = as.numeric(paste0(1,i,simulation))) TxDisc <- Inf #Treatment discontinuation will occur at progression Death <- min(draw_tte(1,'weibull',coef1=OS.shape, coef2= OS.scale + OS.coef.int, seed = as.numeric(paste0(42,i,simulation))), nat.death) #Death occurs at earliest of disease-related death or non-disease-related death PAE <- draw_tte(1,'exp',coef1=-log(1-0.05)) #Occurrence of the progression-accelerating event has a 5% probability for the intervention arm }) %>% #Events applicable to reference treatment #Events are the same except that there will be no treatment discontinuation add_tte(trt="ref", evts = c("Start","Progression","PAE","Death"), input={ Start <- 0 Progression <- draw_tte(1,'weibull',coef1=TTP.shape, coef2= TTP.scale, seed = as.numeric(paste0(1,i,simulation))) Death <- min(draw_tte(1,'weibull', coef1=OS.shape, coef2= OS.scale, seed = as.numeric(paste0(42,i,simulation))), nat.death) #Death occurs at earliest of disease-related death or non-disease-related death PAE <- draw_tte(1,'exp',coef1=-log(1-0.15)) #Occurrence of the progression-accelerating event has a 15% probability for the reference arm }) evt_react_list <- add_reactevt(name_evt = "Start", input = {modify_item(list(fl.int = ifelse(trt=="int",1,0))) }) %>% add_reactevt(name_evt = "TxDisc", input = {modify_item(list("fl.ontx"= 0)) }) %>% add_reactevt(name_evt = "Progression", input = {modify_item(list("pfs.time" = curtime, "fl.prog" = 1)) if(trt=="int"){modify_event(list("TxDisc" = curtime))} #Trigger treatment discontinuation at progression }) %>% add_reactevt(name_evt = "Death", input = {modify_item(list("curtime"=Inf)) }) %>% add_reactevt(name_evt = "PAE", input = {modify_item(list("fl.PAE"= 1)) #Event only accelerates progression if progression has not occurred yet if(fl.prog == 0){modify_event(list("Progression" = max(draw_tte(1,'weibull',coef1=TTP.shape, coef2 = TTP.scale + TTP.coef.int*fl.int, hr = 1.2, seed = as.numeric(paste0(1,i,simulation))),curtime)))} #Occurrence of event accelerates progression by a factor of 1.2 }) util_ongoing <- add_util(evt = c("Start","TxDisc","Progression","Death","PAE"), trt = c("int", "ref"), #common utility across arms util = ifelse(fl.prog == 0, util.PFS, util.PPS)) util_instant <- add_util(evt = c("PAE"), trt = c("int", "ref"), #common utility across arms util = disutil.PAE) cost_ongoing <- #Drug costs are specific to each arm add_cost( evt = c("Start","TxDisc","Progression","Death","PAE"), trt = "int", cost = (cost.drug.int + cost.admin.SC * 12 + #Intervention is administered once a month cost.ae.int) * fl.ontx + ifelse(fl.prog == 0,cost.dm.PFS,cost.dm.PPS)) %>% add_cost( evt = c("Start","TxDisc","Progression","Death","PAE"), trt = "ref", cost = cost.drug.ref + cost.ae.ref + #No ongoing administration cost as reference treatment is oral ifelse(fl.prog == 0,cost.dm.PFS,cost.dm.PPS)) #One-off cost only applies to oral administration of reference treatment, applied at start of treatment cost_instant <- add_cost( evt = "Start", trt = "ref", cost = cost.admin.oral) results <- RunSim( npats=2000, # Simulating the number of patients for which we have IPD n_sim = 1, # We run all patients once (per treatment) psa_bool = FALSE, # No PSA for this example trt_list = c("int", "ref"), common_all_inputs = common_all_inputs, common_pt_inputs = common_pt_inputs, unique_pt_inputs = unique_pt_inputs, init_event_list = init_event_list, evt_react_list = evt_react_list, util_ongoing_list = util_ongoing, cost_ongoing_list = cost_ongoing, cost_instant_list = cost_instant, ncores = 2, drc = 0.035, # discount rate for costs drq = 0.035, # discount rate for QALYs input_out = c("BLAge","Sex","nat.death","pfs.time") ) summary_results_det(results$final_output)

相关帖子

回帖

欢迎来到这里!

我们正在构建一个小众社区,大家在这里相互信任,以平等 • 自由 • 奔放的价值观进行分享交流。最终,希望大家能够找到与自己志同道合的伙伴,共同成长。

注册 关于
请输入回帖内容 ...