灰度化在图像处理中很常见。 生产应用中普遍适用公式 Gray = R*0.299 + G*0.587 + B*0.114。关于运行效率与精度的取舍,请参考http://bbs.ednchina.com/BLOG_ARTICLE_1999487.HTM。
下面使用前文参考文章中提到的Adobe RGB (1998) [gamma=2.20] 公式: Gray = (R^2.2 * 0.2973 + G^2.2 * 0.6274 + B^2.2 * 0.0753)^(1/2.2)。
Java实现如下:
// (R^2.2 * 0.2973 + G^2.2 * 0.6274 + B^2.2 * 0.0753)^(1/2.2) // Adobe RGB (1998) [gamma=2.20] // http://bbs.ednchina.com/BLOG_ARTICLE_1999487.HTM public BufferedImage grarify(final BufferedImage image) { final int width = image.getWidth(); final int height = image.getHeight(); final BufferedImage grayImage = new BufferedImage(width, height, BufferedImage.TYPE_BYTE_GRAY); for (int i = 0; i < width; i++) { for (int j = 0; j < height; j++) { final int color = image.getRGB(i, j); final int r = (color >> 16) & 0xff; final int g = (color >> 8) & 0xff; final int b = color & 0xff; final int gray = (int) Math .pow((Math.pow(r, 2.2) * 0.2973 + Math.pow(g, 2.2) * 0.6274 + Math.pow(b, 2.2) * 0.0753), (1 / 2.2)); grayImage.setRGB(i, j, gray); } } return grayImage; }
附:参考文章《RGB转灰度图的几种算法》 http://bbs.ednchina.com/BLOG_ARTICLE_1999487.HTM
方法一:
对于彩色转灰度,有一个很著名的心理学公式:
Gray = R*0.299 + G*0.587 + B*0.114
方法二:
而实际应用时,希望避免低速的浮点运算,所以需要整数算法。
注意到系数都是3位精度的没有,我们可以将它们缩放1000倍来实现整数运算算法:
Gray = (R*299 + G*587 + B*114 + 500) / 1000
RGB一般是8位精度,现在缩放1000倍,所以上面的运算是32位整型的运算。注意后面那个除法是整数 除法,所以需要加上500来实现四舍五入。
就是由于该算法需要32位运算,所以该公式的另一个变种很流行:
Gray = (R*30 + G*59 + B*11 + 50) / 100
方法三:
上面的整数算法已经很快了,但是有一点仍制约速度,就是最后的那个除法。移位比除法快多了,所以可以将系数缩放成 2的整数幂。
习惯上使用16位精度,2的16次幂是65536,所以这样计算系数:
0.299 * 65536 = 19595.264 ≈ 19595
0.587 * 65536 + (0.264) = 38469.632 + 0.264 = 38469.896 ≈ 38469
0.114 * 65536 + (0.896) = 7471.104 + 0.896 = 7472
可能很多人看见了,我所使用的舍入方式不是四舍五入。四舍五入会有较大的误差,应该将以前的计算结果的误差一起计算进去,舍入方式是去尾法:
写成表达式是:
Gray = (R*19595 + G*38469 + B*7472) >> 16
2至20位精度的系数:
Gray = (R*1 + G*2 + B*1) >> 2
Gray = (R*2 + G*5 + B*1) >> 3
Gray = (R*4 + G*10 + B*2) >> 4
Gray = (R*9 + G*19 + B*4) >> 5
Gray = (R*19 + G*37 + B*8) >> 6
Gray = (R*38 + G*75 + B*15) >> 7
Gray = (R*76 + G*150 + B*30) >> 8
Gray = (R*153 + G*300 + B*59) >> 9
Gray = (R*306 + G*601 + B*117) >> 10
Gray = (R*612 + G*1202 + B*234) >> 11
Gray = (R*1224 + G*2405 + B*467) >> 12
Gray = (R*2449 + G*4809 + B*934) >> 13
Gray = (R*4898 + G*9618 + B*1868) >> 14
Gray = (R*9797 + G*19235 + B*3736) >> 15
Gray = (R*19595 + G*38469 + B*7472) >> 16
Gray = (R*39190 + G*76939 + B*14943) >> 17
Gray = (R*78381 + G*153878 + B*29885) >> 18
Gray = (R*156762 + G*307757 + B*59769) >> 19
Gray = (R*313524 + G*615514 + B*119538) >> 20
仔细观察上面的表格,这些精度实际上是一样的:3与4、7与8、10与11、13与14、19与20
所以16位运算下最好的计算公式是使用7位精度,比先前那个系数缩放100倍的精度高,而且速度快:
Gray = (R*38 + G*75 + B*15) >> 7
其实最有意思的还是那个2位精度的,完全可以移位优化:
Gray = (R + (WORD)G<<1 + B) >> 2
另一种是 Adobe Photoshop 里的公式
Adobe RGB (1998) [gamma=2.20]
Gray = (R^2.2 * 0.2973 + G^2.2 * 0.6274 + B^2.2 * 0.0753)^(1/2.2)
该方法运行速度稍慢,但是效果很好。
还有就是 平均值方法
GRAY = (RED+BLUE+GREEN)/3
(GRAY,GRAY,GRAY ) 替代 (RED,GREEN,BLUE)
欢迎来到这里!
我们正在构建一个小众社区,大家在这里相互信任,以平等 • 自由 • 奔放的价值观进行分享交流。最终,希望大家能够找到与自己志同道合的伙伴,共同成长。
注册 关于