简介:使用scikit-learn进行数据挖掘

本贴最后更新于 2999 天前,其中的信息可能已经渤澥桑田

该简介翻译自 An introduction to machine learning with scikit-learn
选择翻译这篇简介的原因很简单:

  • scikit-learn 是非常优秀的 python 机器学习库
  • 该篇写得非常好,即使不使用 sklearn,也可以作为数据挖掘入门的短文。

以下是翻译的内容。


#本节内容

在本章节中,我们介绍一些在 sklearn 中会使用到的机器学习专业名词,并给出一些简单的例子。

机器学习:问题设定

通常来说,学习问题关注样本大小为 n 的数据集,并尝试预测未知的数据集。若每个样本不只是一个简单的数字,而是一个多维的条目,我们称之有多个属性或特征。

我们可以把学习问题划分为几个大的类别:

  • 有监督学习(supervised learning),在这种学习问题中,数据会附带我们要预测的属性。有监督学习可以进而分为以下两类:
    • 分类(classification):样本属于两个或多个分类,我们要从已经标记类别的数据中学习,并对未标记类别的数据进行预测。分类问题的一个典型例子是识别手写数字,该问题的目的识别每个输入向量对应的有限且离散的数字。换句话说分类问题是,离散形式(相对于连续)的有监督学习,提供的 n 个样本的类别是有限的,我们尝试为每个样本标记正确的分类。
    • 回归(regression):若输出的期望值是 1 个或多个连续变量,我们称该问题为回归。回归问题的一个典型例子是通过三文鱼的年龄和重量,预测其长度。
  • 无监督学习(unsupervised learning),在这种学习问题中,训练数据集是不包含任何目标值的输入向量 x。学习的目的有多种:
    • 聚类(clustering),发现数据中相似的样本分组。
    • 密度估计(density estimation),通过输入空间确定数据的分布。
    • 为了数据可视化或其他目的,将多维空间降低至 2 或 3 维

训练集和测试集
可粗略认为,机器学习就是从一个数据集中学习隐含的规则,并应用到新的数据集上。因此在机器学习实践中,为了评估算法,总是强制把数据集分为两个部分:训练集,用于学习隐含规则;测试集,用于测试规则。


#加载样例数据集
scikit-learn 自带了几个标准数据集,例如用于分类的 iris 和 digits 数据集,用于回归的 boston house prices 数据集。

接下来,我们使用 Python 交互式环境加载 iris 和 digits 数据集。
我们约定用 '$'表示 shell 类型,>>> 表示 python 交互环境。

$ python
>>> from sklearn import datasets
>>> iris = datasets.load_iris()
>>> digits = datasets.load_digits()

数据集是一个类字典对象,包括了全部的数据和该数据的元数据。数据保存在 .data 成员中,该成员是(n 个向量*m 个特征)的数组。在有监督学习中,类别变量存储在 .target 成员中。
例如,在 digits 数据集中,通过 digits.data 可以获取用于分类的向量。

>>> print(digits.data)  
[[  0.   0.   5. ...,   0.   0.   0.]
 [  0.   0.   0. ...,  10.   0.   0.]
 [  0.   0.   0. ...,  16.   9.   0.]
 ...,
 [  0.   0.   1. ...,   6.   0.   0.]
 [  0.   0.   2. ...,  12.   0.   0.]
 [  0.   0.  10. ...,  12.   1.   0.]]

digits.target 中存储了 digits 数据集中对应每个向量的类别,也是我们预测的目标。

>>> digits.target
array([0, 1, 2, ..., 8, 9, 8])

数据格式
数据集总是一个二维数组,格式为(n 个向量 * m 个特征),尽管原始数据可能是其他不同的格式。在 digits 数据集中,每个原始数据是用(8,8)表示的图像(在 digits.data 中被压缩到一行):

>>> digits.images[0]
array([[  0.,   0.,   5.,  13.,   9.,   1.,   0.,   0.],
       [  0.,   0.,  13.,  15.,  10.,  15.,   5.,   0.],
       [  0.,   3.,  15.,   2.,   0.,  11.,   8.,   0.],
       [  0.,   4.,  12.,   0.,   0.,   8.,   8.,   0.],
       [  0.,   5.,   8.,   0.,   0.,   9.,   8.,   0.],
       [  0.,   4.,  11.,   0.,   1.,  12.,   7.,   0.],
       [  0.,   2.,  14.,   5.,  10.,  12.,   0.,   0.],
       [  0.,   0.,   6.,  13.,  10.,   0.,   0.,   0.]])

#学习和预测
在 digits 数据集中,目标是预测给定的图像数据代表的数字。我们知道训练样本对应的分类(数字 0 到 9),训练对应的 estimator,用于预测未知分类的图像。

在 scikit-learn 中,用于分类的 estimator 是一个实现了 fit(X, y)predict(T) 的 Python 对象。

实现了支持向量分类的 sklearn.svm.SVC 类就是一个 estimator。estimator 的构造函数接受模型的参数。但暂时,我们把 estimator 当作一个黑盒:

>>> from sklearn import svm
>>> clf = svm.SVC(gamma=0.001, C=100.)

选择模型的参数
这上面的例子中,我们手动地设置 gamma 的值。通过使用类似于 grid search 或 cross validation 工具,可以自动地寻找适合的参数。

上面例子将我们的 estimator 实例命名为 clf,因为其是一个分类器(classifier)。现在,需要将其通过学习调整对应模型。这个过程通过将训练数据集传给 fit 方法来实现。我们用除了最后一个图像的 digits 数据集作为训练数据集,在 python 中可以方便地使用[:-1]来构造训练集:

>>> clf.fit(digits.data[:-1], digits.target[:-1])  
SVC(C=100.0, cache_size=200, class_weight=None, coef0=0.0,
  decision_function_shape=None, degree=3, gamma=0.001, kernel='rbf',
  max_iter=-1, probability=False, random_state=None, shrinking=True,
  tol=0.001, verbose=False)  

现在我们可以用该模型对新数据进行预测,可以询问模型刚才没有使用的最后一个图像对应的数字:

>>> clf.predict(digits.data[-1:])
array([8])  

最后一个图像数据对应的图像如下:

digit imag

如你所见,这确实是一个具有挑战性的任务:图像的分辨率特别差。你同意分类器的判定吗?

这里给出一个完整的分类问题的例子:Recognizing hand-written digits,你可以执行这个代码,并进行学习。


#模型持久化
通过 Python 内建的序列化模块 pickle,可以将 sklearn 中的模型进行持久化。

>>> from sklearn import svm
>>> from sklearn import datasets
>>> clf = svm.SVC()
>>> iris = datasets.load_iris()
>>> X, y = iris.data, iris.target
>>> clf.fit(X, y)  
SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0,
  decision_function_shape=None, degree=3, gamma='auto', kernel='rbf',
  max_iter=-1, probability=False, random_state=None, shrinking=True,
  tol=0.001, verbose=False)

>>> import pickle
>>> s = pickle.dumps(clf)
>>> clf2 = pickle.loads(s)
>>> clf2.predict(X[0:1])
array([0])
>>> y[0]
0

特别的,在 sklearn 中,可以使用 joblib 替代 pickle (joblib.dump 和 joblib.load),joblib 在大数据上表现更加高效,但只能序列化到磁盘中,而非字符串。

>>> from sklearn.externals import joblib
>>> joblib.dump(clf, 'filename.pkl')   

然后,你可以重新读取并反序列化该模型(可能在另外的一个 python 程序中):

>>> clf = joblib.load('filename.pkl') 


joblib.dump 返回一个文件名列表。clf 对象中包含的每一个单独的 numpy 数组会被序列化为文件系统中的一个单独文件。当使用 joblib.load 读取模型时,文件夹下的每个文件都是必要的。

注意 pickle 有一些安全性和可维护性的问题。参考 Model persistence,获取更多有关 sklearn 中模型持久化的信息。


#惯例
scikit-learn 中的 estimator 遵循以下的规则,好让他们的行为更加可预测。

##类型转换
除非明确指明,否则输入将会被强制转换为 float64

>>> import numpy as np
>>> from sklearn import random_projection

>>> rng = np.random.RandomState(0)
>>> X = rng.rand(10, 2000)
>>> X = np.array(X, dtype='float32')
>>> X.dtype
dtype('float32')

>>> transformer = random_projection.GaussianRandomProjection()
>>> X_new = transformer.fit_transform(X)
>>> X_new.dtype
dtype('float64')

在上面例子中,X 的类型为 float32,通过 .fit_transform(X) 被转化为 float64

回归的结果被转化为 float32, 分类的结果保持不变:

>>> from sklearn import datasets
>>> from sklearn.svm import SVC
>>> iris = datasets.load_iris()
>>> clf = SVC()
>>> clf.fit(iris.data, iris.target)  
SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0,
  decision_function_shape=None, degree=3, gamma='auto', kernel='rbf',
  max_iter=-1, probability=False, random_state=None, shrinking=True,
  tol=0.001, verbose=False)

>>> list(clf.predict(iris.data[:3]))
[0, 0, 0]

>>> clf.fit(iris.data, iris.target_names[iris.target])  
SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0,
  decision_function_shape=None, degree=3, gamma='auto', kernel='rbf',
  max_iter=-1, probability=False, random_state=None, shrinking=True,
  tol=0.001, verbose=False)

>>> list(clf.predict(iris.data[:3]))  
['setosa', 'setosa', 'setosa']  

在上面例子中,第一个 predict() 返回整数数组,因为用于训练的 iris.target 是整数数组。第二个 predict() 返回字符串数组,因为用于训练的 iris.target_names 是字符串数组。

##改变和升级参数
通过 sklearn.pipeline.Pipeline.set_params 方法 estimator 的超参数在构造后仍然可以修改。通过多次调用 fit() 方法可以覆盖之前的 fit()

>>> import numpy as np
>>> from sklearn.svm import SVC

>>> rng = np.random.RandomState(0)
>>> X = rng.rand(100, 10)
>>> y = rng.binomial(1, 0.5, 100)
>>> X_test = rng.rand(5, 10)

>>> clf = SVC()
>>> clf.set_params(kernel='linear').fit(X, y)  
SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0,
  decision_function_shape=None, degree=3, gamma='auto', kernel='linear',
  max_iter=-1, probability=False, random_state=None, shrinking=True,
  tol=0.001, verbose=False)
>>> clf.predict(X_test)
array([1, 0, 1, 1, 0])

>>> clf.set_params(kernel='rbf').fit(X, y)  
SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0,
  decision_function_shape=None, degree=3, gamma='auto', kernel='rbf',
  max_iter=-1, probability=False, random_state=None, shrinking=True,
  tol=0.001, verbose=False)
>>> clf.predict(X_test)
array([0, 0, 0, 1, 0])

在该例子中,SVC()构造函数中设定了的默认核函数为 rbf,但是随后被改为 linear 并训练模型,然后又重新修改为 rbf 并重新训练模型。

  • 数据挖掘
    17 引用 • 32 回帖 • 2 关注
  • Python

    Python 是一种面向对象、直译式电脑编程语言,具有近二十年的发展历史,成熟且稳定。它包含了一组完善而且容易理解的标准库,能够轻松完成很多常见的任务。它的语法简捷和清晰,尽量使用无异义的英语单词,与其它大多数程序设计语言使用大括号不一样,它使用缩进来定义语句块。

    536 引用 • 672 回帖

相关帖子

欢迎来到这里!

我们正在构建一个小众社区,大家在这里相互信任,以平等 • 自由 • 奔放的价值观进行分享交流。最终,希望大家能够找到与自己志同道合的伙伴,共同成长。

注册 关于
请输入回帖内容 ...
  • wizardforcel

    什么都好。。就是官方的教程太少了。。

  • 其他回帖
  • R

    @Zing 挺好的 @88250 编辑记录功能调整下,都可以弄个文档翻译区了

  • Zing
    作者

    @R 嗯嗯 是的 我翻译的 水平有限

  • R

    👍 楼主翻译的?

推荐标签 标签

  • BAE

    百度应用引擎(Baidu App Engine)提供了 PHP、Java、Python 的执行环境,以及云存储、消息服务、云数据库等全面的云服务。它可以让开发者实现自动地部署和管理应用,并且提供动态扩容和负载均衡的运行环境,让开发者不用考虑高成本的运维工作,只需专注于业务逻辑,大大降低了开发者学习和迁移的成本。

    19 引用 • 75 回帖 • 616 关注
  • frp

    frp 是一个可用于内网穿透的高性能的反向代理应用,支持 TCP、UDP、 HTTP 和 HTTPS 协议。

    16 引用 • 7 回帖 • 2 关注
  • 服务器

    服务器,也称伺服器,是提供计算服务的设备。由于服务器需要响应服务请求,并进行处理,因此一般来说服务器应具备承担服务并且保障服务的能力。

    124 引用 • 580 回帖
  • Flume

    Flume 是一套分布式的、可靠的,可用于有效地收集、聚合和搬运大量日志数据的服务架构。

    9 引用 • 6 回帖 • 613 关注
  • Kotlin

    Kotlin 是一种在 Java 虚拟机上运行的静态类型编程语言,由 JetBrains 设计开发并开源。Kotlin 可以编译成 Java 字节码,也可以编译成 JavaScript,方便在没有 JVM 的设备上运行。在 Google I/O 2017 中,Google 宣布 Kotlin 成为 Android 官方开发语言。

    19 引用 • 33 回帖 • 51 关注
  • 程序员

    程序员是从事程序开发、程序维护的专业人员。

    544 引用 • 3531 回帖
  • 区块链

    区块链是分布式数据存储、点对点传输、共识机制、加密算法等计算机技术的新型应用模式。所谓共识机制是区块链系统中实现不同节点之间建立信任、获取权益的数学算法 。

    91 引用 • 751 回帖
  • SQLServer

    SQL Server 是由 [微软] 开发和推广的关系数据库管理系统(DBMS),它最初是由 微软、Sybase 和 Ashton-Tate 三家公司共同开发的,并于 1988 年推出了第一个 OS/2 版本。

    19 引用 • 31 回帖 • 2 关注
  • 面试

    面试造航母,上班拧螺丝。多面试,少加班。

    324 引用 • 1395 回帖 • 1 关注
  • Swagger

    Swagger 是一款非常流行的 API 开发工具,它遵循 OpenAPI Specification(这是一种通用的、和编程语言无关的 API 描述规范)。Swagger 贯穿整个 API 生命周期,如 API 的设计、编写文档、测试和部署。

    26 引用 • 35 回帖
  • Ruby

    Ruby 是一种开源的面向对象程序设计的服务器端脚本语言,在 20 世纪 90 年代中期由日本的松本行弘(まつもとゆきひろ/Yukihiro Matsumoto)设计并开发。在 Ruby 社区,松本也被称为马茨(Matz)。

    7 引用 • 31 回帖 • 196 关注
  • NGINX

    NGINX 是一个高性能的 HTTP 和反向代理服务器,也是一个 IMAP/POP3/SMTP 代理服务器。 NGINX 是由 Igor Sysoev 为俄罗斯访问量第二的 Rambler.ru 站点开发的,第一个公开版本 0.1.0 发布于 2004 年 10 月 4 日。

    311 引用 • 546 回帖
  • 快应用

    快应用 是基于手机硬件平台的新型应用形态;标准是由主流手机厂商组成的快应用联盟联合制定;快应用标准的诞生将在研发接口、能力接入、开发者服务等层面建设标准平台;以平台化的生态模式对个人开发者和企业开发者全品类开放。

    15 引用 • 127 回帖 • 1 关注
  • 分享

    有什么新发现就分享给大家吧!

    245 引用 • 1776 回帖 • 1 关注
  • Ubuntu

    Ubuntu(友帮拓、优般图、乌班图)是一个以桌面应用为主的 Linux 操作系统,其名称来自非洲南部祖鲁语或豪萨语的“ubuntu”一词,意思是“人性”、“我的存在是因为大家的存在”,是非洲传统的一种价值观,类似华人社会的“仁爱”思想。Ubuntu 的目标在于为一般用户提供一个最新的、同时又相当稳定的主要由自由软件构建而成的操作系统。

    123 引用 • 168 回帖
  • jsoup

    jsoup 是一款 Java 的 HTML 解析器,可直接解析某个 URL 地址、HTML 文本内容。它提供了一套非常省力的 API,可通过 DOM,CSS 以及类似于 jQuery 的操作方法来取出和操作数据。

    6 引用 • 1 回帖 • 473 关注
  • 负能量

    上帝为你关上了一扇门,然后就去睡觉了....努力不一定能成功,但不努力一定很轻松 (° ー °〃)

    88 引用 • 1234 回帖 • 441 关注
  • abitmean

    有点意思就行了

    39 关注
  • 资讯

    资讯是用户因为及时地获得它并利用它而能够在相对短的时间内给自己带来价值的信息,资讯有时效性和地域性。

    54 引用 • 85 回帖
  • gRpc
    11 引用 • 9 回帖 • 49 关注
  • TensorFlow

    TensorFlow 是一个采用数据流图(data flow graphs),用于数值计算的开源软件库。节点(Nodes)在图中表示数学操作,图中的线(edges)则表示在节点间相互联系的多维数据数组,即张量(tensor)。

    20 引用 • 19 回帖 • 1 关注
  • 运维

    互联网运维工作,以服务为中心,以稳定、安全、高效为三个基本点,确保公司的互联网业务能够 7×24 小时为用户提供高质量的服务。

    148 引用 • 257 回帖
  • 锤子科技

    锤子科技(Smartisan)成立于 2012 年 5 月,是一家制造移动互联网终端设备的公司,公司的使命是用完美主义的工匠精神,打造用户体验一流的数码消费类产品(智能手机为主),改善人们的生活质量。

    4 引用 • 31 回帖 • 8 关注
  • ngrok

    ngrok 是一个反向代理,通过在公共的端点和本地运行的 Web 服务器之间建立一个安全的通道。

    7 引用 • 63 回帖 • 613 关注
  • CAP

    CAP 指的是在一个分布式系统中, Consistency(一致性)、 Availability(可用性)、Partition tolerance(分区容错性),三者不可兼得。

    11 引用 • 5 回帖 • 580 关注
  • 游戏

    沉迷游戏伤身,强撸灰飞烟灭。

    171 引用 • 814 回帖
  • ActiveMQ

    ActiveMQ 是 Apache 旗下的一款开源消息总线系统,它完整实现了 JMS 规范,是一个企业级的消息中间件。

    19 引用 • 13 回帖 • 641 关注