sklearn-文本分析

本贴最后更新于 3114 天前,其中的信息可能已经时移世异

本章节的目的是通过一个实际的问题来介绍 scikit-learn 的主要文本分析工具。该问题是:分析有 20 个主题的文本文件(新闻帖)。

在本章节中,我们会接触到如下内容:

  • 加载文件内容和类别
  • 抽取适合机器学习的特征向量
  • 训练线性模型来拟合分类
  • 使用网格搜索来寻找适合特征抽取和分类的参数配置

#开始
在开始该教程之前,你必须安装 scikit-learn 和所有需求的依赖。
安装相关的请查看 installation

该教程的源码可以在你的 scikit-learn 文件夹下找到:

scikit-learn/doc/tutorial/text_analytics/  

教程文件下,应该包含了如下文件:

  • *.rst files - 使用 sphinx 写的教程文档
  • data - 本教程将用到的数据集
  • skeletons - 练习题的不完全示例脚本
  • solutions - 练习题的答案

你可以将 skeletons 复制到你硬盘上的文件夹下,并重命名为 sklearn_tut_workspace,这样你就可以编辑自己的练习题解决方法,同时也不影响原来的内容:

% cp -r skeletons work_directory/sklearn_tut_workspace  

机器学习算法需要数据。到每个 $TUTORIAL_HOME/data 子文件价下,运行 fetch_data.py 脚本。
例如:

% cd $TUTORIAL_HOME/data/languages
% less fetch_data.py
% python fetch_data.py

#加载“Twenty Newsgroups”数据集
这是“Twenty Newsgroups”数据集的官方描述

20 Newsgroups 数据集是大约 20000 新闻报道文档的集合,大致覆盖了 20 类不同的新闻报道。这些文档最初是由 Ken Lang 为了支撑他的论文“Newsweeder: Learning to filter netnews”收集的。20 Newsgroups 数据集很快在机器学习处理文本技术实验中流行起来,常用于文本分类和聚类。
接下来,我们将使用 sklearn 内建的数据集加载器加载 20 newsgroups 数据集。当然,你也可以在网上下载数据集,再用 sklearn.datasets.load_files 指向解压出来的 20news-bydate-train 子文件夹。

为了节约时间,在第一个例子中,我们只是关注 20 类中的 4 类新闻报道:

>>> categories = ['alt.atheism', 'soc.religion.christian',
...               'comp.graphics', 'sci.med']

现在我们加载属于上述 4 类的新闻的文件:

>>> from sklearn.datasets import fetch_20newsgroups
>>> twenty_train = fetch_20newsgroups(subset='train',
...     categories=categories, shuffle=True, random_state=42)  

返回的数据集是 sklearn 中的 bunch 实体:包含的字段信息和数据,可以像 python 中的 dict 或 object 一样访问。target_names 属性保存了类别:

>>> twenty_train.target_names
['alt.atheism', 'comp.graphics', 'sci.med', 'soc.religion.christian']

加载到内容中的文件数据存储在 data 属性中。也可以使用 filenames 属性访问:

>>> len(twenty_train.data)
2257
>>> len(twenty_train.filenames)
2257

打印加载的第一个文件的第一行:

>>> print("\n".join(twenty_train.data[0].split("\n")[:3]))
From: sd345@city.ac.uk (Michael Collier)
Subject: Converting images to HP LaserJet III?
Nntp-Posting-Host: hampton

>>> print(twenty_train.target_names[twenty_train.target[0]])
comp.graphics

有监督学习算法在训练集中需要每个文档和对应的类别属性。在这个例子中,类别是新闻报道的类别,同时也是每个文档的父文件夹的名字。类别属性用整数代表按顺序存储在 target 属性中:

>>> twenty_train.target[:10]
array([1, 1, 3, 3, 3, 3, 3, 2, 2, 2])

可以用以下方法还原类别的真正名称:

>>> for t in twenty_train.target[:10]:
...     print(twenty_train.target_names[t])
...
comp.graphics
comp.graphics
soc.religion.christian
soc.religion.christian
soc.religion.christian
soc.religion.christian
soc.religion.christian
sci.med
sci.med
sci.med  

你可以注意到样本已经被随机洗牌,这对以下这种情况特别有用:你只是选择第一个样本来快速训练模型,并以训练的结果来启发之后的正式训练。


#从文本文件抽取特征
为了对文本文件使用机器学习,首先我们需要将文本内容转化为数值特征向量。
##Bags of words
最直观的方法就是抽取有代表性的单词:

  1. 为训练集中每个文档中出现的每个单词分配一个固定的数字 id(建立从单词映射到数字索引的 dict)
  2. 对每个文档 i,计算每个单词 w 出现的次数并存在 X[i, j],其中特征 j 是单词 w 在 1 中分配的 id 值。

由 Bags of words 方法产生的向量的维度 n_features 是语料库中不同单词的数量:约大于 100,000

若样本数量 n_samples == 10000,特征向量 X 用类型为 float32 的 numpy array 表示,那么需要 10000 * 100000 * 4 bytes = 4GB 内存,即使对于目前的计算机来说也是很勉强的。

幸运的是,特征 X 中的大部分值为 0,因为给定的文档中使用的单词不超过几千个。因此,我们认为 bags of words 的结果 是典型的 高维系数数据集。我们可以通过只存储向量中非零的部分来节约内存。

scipy.sparse 矩阵正是为了解决这种问题设计的数据结构,sklearn 内建中已经支持了这种数据结构。

##使用 sklearn 进行分词(Tokenizing text)
文本预处理,分词和过滤被包含在高级组件中,可以用于创建特征字典和将文档转化为特征向量:

>>> from sklearn.feature_extraction.text import CountVectorizer
>>> count_vect = CountVectorizer()
>>> X_train_counts = count_vect.fit_transform(twenty_train.data)
>>> X_train_counts.shape
(2257, 35788)

CountVectorizer 支持计算 N-grams 单词或字符序列。一旦 fit 完成,CountVectorizer 建立起特征索引的 dict:

>>> count_vect.vocabulary_.get(u'algorithm')
4690  

单词表中单词的索引值指向其在整个训练语料库中的出现次数。

##将出现次数转化为频率

计算出现次数是一个好的开端,但是存在如下问题:更长的文档中单词的平均出现次数会比短文档的更高,即使他们的主题是一致的。

为了避免出现上述可能的差异,使用文档中每个单词出现的数量除以该文档单词的总数量:这个新特征称为 tf (Term Frequencies,词频)。

另一个需要考虑的问题是,一个文档的语料库越小,则每个语料包含的信息量越大。因此需要削减语料库大的文档中单词特征的权重。

这种削减方法是 tf-idf(Term Frequency times Inverse Document Frequency)

tf 和 tf-idf 可以通过下面代码计算:

>>> from sklearn.feature_extraction.text import TfidfTransformer
>>> tf_transformer = TfidfTransformer(use_idf=False).fit(X_train_counts)
>>> X_train_tf = tf_transformer.transform(X_train_counts)
>>> X_train_tf.shape
(2257, 35788)  

在上面示例代码中,我们先使用 fit(...) 方法使用数据调整 estimator,接着使用 transform(...)方法将我们的计数矩阵转化为 tf-idf 表示。直接使用 fit_transform(..) 方法将这两个步骤可以合并到一起以减少一些中间计算。 以下代码实现的功能和上面的代码一直:

>>> tfidf_transformer = TfidfTransformer()
>>> X_train_tfidf = tfidf_transformer.fit_transform(X_train_counts)
>>> X_train_tfidf.shape
(2257, 35788)

#训练分类器
现在我们已经得到了特征,我们可以训练一个分类器并尝试预测测试数据的类别。我们将以 naive Bayes 开始,该分类器可以为我们的问题提供一个良好的基线。sklearn 包含了 naive Bayes 的几个变种版本,其中多项式版本最适合于词频。

>>> from sklearn.naive_bayes import MultinomialNB
>>> clf = MultinomialNB().fit(X_train_tfidf, twenty_train.target)  

预测新的文档的类别,我们需要用和上述几乎一直的方法抽出特征。不同的是,我们直接调用 TfidfTransformer 的 transform 方法,而不是 fit_transform。因为之前我们已经使用训练样本 fit 过了。

>>> docs_new = ['God is love', 'OpenGL on the GPU is fast']
>>> X_new_counts = count_vect.transform(docs_new)
>>> X_new_tfidf = tfidf_transformer.transform(X_new_counts)

>>> predicted = clf.predict(X_new_tfidf)

>>> for doc, category in zip(docs_new, predicted):
...     print('%r => %s' % (doc, twenty_train.target_names[category]))
...
'God is love' => soc.religion.christian
'OpenGL on the GPU is fast' => comp.graphics  

#建立管道
为了更加简便地使用 vectorizer => transformer => classifier 工作流程,sklearn 提供了 Pipeline 类,该类类似于混合分类器:

>>> from sklearn.pipeline import Pipeline
>>> text_clf = Pipeline([('vect', CountVectorizer()),
...                      ('tfidf', TfidfTransformer()),
...                      ('clf', MultinomialNB()),
... ])  

其中 vect, tfidf 和 clf 是随意命名的。我们将在下面网格搜索一节中看到他们的用法。现在训练整个模型(包括特征抽取、转化、分类器训练),仅仅需要通过以下命令:

>>> text_clf = text_clf.fit(twenty_train.data, twenty_train.target)

#使用测试集评估
评估模型预测的正确率是非常简单的:

>>> import numpy as np
>>> twenty_test = fetch_20newsgroups(subset='test',
...     categories=categories, shuffle=True, random_state=42)
>>> docs_test = twenty_test.data
>>> predicted = text_clf.predict(docs_test)
>>> np.mean(predicted == twenty_test.target)            
0.834...  

我们获得 83.4% 的准确率。现在我们看看能否使用线性 SVM 模型获得更好的结果(线性 SVM 被普遍地认为是最好的文本分类算法,虽然比 naive Bayes 慢一些)。我们仅仅需要将管道中的分类器进行特换即可。

>>> from sklearn.linear_model import SGDClassifier
>>> text_clf = Pipeline([('vect', CountVectorizer()),
...                      ('tfidf', TfidfTransformer()),
...                      ('clf', SGDClassifier(loss='hinge', penalty='l2',
...                                            alpha=1e-3, n_iter=5, random_state=42)),
... ])
>>> _ = text_clf.fit(twenty_train.data, twenty_train.target)
>>> predicted = text_clf.predict(docs_test)
>>> np.mean(predicted == twenty_test.target)            
0.912...  

此外 sklearn 还提供了更详细的效果评估工具:

>>> from sklearn import metrics
>>> print(metrics.classification_report(twenty_test.target, predicted,
...     target_names=twenty_test.target_names))
...                                         
                        precision    recall  f1-score   support

           alt.atheism       0.95      0.81      0.87       319
         comp.graphics       0.88      0.97      0.92       389
               sci.med       0.94      0.90      0.92       396
soc.religion.christian       0.90      0.95      0.93       398

           avg / total       0.92      0.91      0.91      1502


>>> metrics.confusion_matrix(twenty_test.target, predicted)
array([[258,  11,  15,  35],
       [  4, 379,   3,   3],
       [  5,  33, 355,   3],
       [  5,  10,   4, 379]])  

由混淆矩阵可以看出,新闻报道中的 atheism 主题比 comp.graphics 更容易被混淆。


#使用网格搜索调整参数
我们已经在 TfidfTransformer 中使用了一些参数,如“use_idf”。同样,分类器也会有很多参数,如 MultinomialNB 分类器包含平滑参数 aipha,SGDClassifier 包含惩罚参数 alpha 等等。

逐个调整 pipline 中的参数是不明智的,我们需要一个穷举搜索方法(exhaustive search)帮助我们寻找参数网格中最好的参数组合。

>>> from sklearn.grid_search import GridSearchCV
>>> parameters = {'vect__ngram_range': [(1, 1), (1, 2)],
...               'tfidf__use_idf': (True, False),
...               'clf__alpha': (1e-2, 1e-3),
... }

显然的,穷举搜索方法开销是较大的。如果我们有多核 CPU,我们可以通过设置 n_jobs = -1,让网格搜索计算时使用所有的 cpu 进行并行计算:

>>> gs_clf = GridSearchCV(text_clf, parameters, n_jobs=-1)  

网格搜索实例和普通的 sklearn 模型一样。让我们在一个较小的数据集中机械能网格搜索,以缩短计算时间:

>>> gs_clf = gs_clf.fit(twenty_train.data[:400], twenty_train.target[:400])  

GridSearchCV 的 fit 方法返回一个分类器,我们可以使用它进行预测:

>>> twenty_train.target_names[gs_clf.predict(['God is love'])]
'soc.religion.christian'  

但是另一方面,这个分类器是相当巨大和笨拙的。我们可以使用 grid_scores_ 属性从该对象中获取最佳的参数列表。

>>> best_parameters, score, _ = max(gs_clf.grid_scores_, key=lambda x: x[1])
>>> for param_name in sorted(parameters.keys()):
...     print("%s: %r" % (param_name, best_parameters[param_name]))
...
clf__alpha: 0.001
tfidf__use_idf: True
vect__ngram_range: (1, 1)

>>> score                                              
0.900...  

练习题连接


#路在何方
以下是几点建议可以帮助你在学完本指导后,在 sklearn 路上走得更远:

  • 尝试玩一玩 CountVectorizer 下的 analyzer 和 token normalisation
  • 如果你没有类属性,尝试使用聚类方法获得
  • 如果每个文档有多个类属性,可以看看 Multiclass and multilabel section
  • 尝试使用 Truncated SVD 进行潜在语义分析
  • 使用 Out-of-core 分类方法学习没办法加载到主存的数据
  • 尝试使用 Hashing Vectorizer 替换 CountVectorizer
  • 数据挖掘
    17 引用 • 32 回帖 • 3 关注
  • Python

    Python 是一种面向对象、直译式电脑编程语言,具有近二十年的发展历史,成熟且稳定。它包含了一组完善而且容易理解的标准库,能够轻松完成很多常见的任务。它的语法简捷和清晰,尽量使用无异义的英语单词,与其它大多数程序设计语言使用大括号不一样,它使用缩进来定义语句块。

    543 引用 • 672 回帖 • 1 关注

相关帖子

欢迎来到这里!

我们正在构建一个小众社区,大家在这里相互信任,以平等 • 自由 • 奔放的价值观进行分享交流。最终,希望大家能够找到与自己志同道合的伙伴,共同成长。

注册 关于
请输入回帖内容 ...

推荐标签 标签

  • RYMCU

    RYMCU 致力于打造一个即严谨又活泼、专业又不失有趣,为数百万人服务的开源嵌入式知识学习交流平台。

    4 引用 • 6 回帖 • 51 关注
  • jQuery

    jQuery 是一套跨浏览器的 JavaScript 库,强化 HTML 与 JavaScript 之间的操作。由 John Resig 在 2006 年 1 月的 BarCamp NYC 上释出第一个版本。全球约有 28% 的网站使用 jQuery,是非常受欢迎的 JavaScript 库。

    63 引用 • 134 回帖 • 724 关注
  • 新人

    让我们欢迎这对新人。哦,不好意思说错了,让我们欢迎这位新人!
    新手上路,请谨慎驾驶!

    52 引用 • 228 回帖 • 1 关注
  • 开源

    Open Source, Open Mind, Open Sight, Open Future!

    408 引用 • 3574 回帖
  • RESTful

    一种软件架构设计风格而不是标准,提供了一组设计原则和约束条件,主要用于客户端和服务器交互类的软件。基于这个风格设计的软件可以更简洁,更有层次,更易于实现缓存等机制。

    30 引用 • 114 回帖 • 2 关注
  • abitmean

    有点意思就行了

    29 关注
  • C

    C 语言是一门通用计算机编程语言,应用广泛。C 语言的设计目标是提供一种能以简易的方式编译、处理低级存储器、产生少量的机器码以及不需要任何运行环境支持便能运行的编程语言。

    85 引用 • 165 回帖 • 2 关注
  • NGINX

    NGINX 是一个高性能的 HTTP 和反向代理服务器,也是一个 IMAP/POP3/SMTP 代理服务器。 NGINX 是由 Igor Sysoev 为俄罗斯访问量第二的 Rambler.ru 站点开发的,第一个公开版本 0.1.0 发布于 2004 年 10 月 4 日。

    311 引用 • 546 回帖
  • iOS

    iOS 是由苹果公司开发的移动操作系统,最早于 2007 年 1 月 9 日的 Macworld 大会上公布这个系统,最初是设计给 iPhone 使用的,后来陆续套用到 iPod touch、iPad 以及 Apple TV 等产品上。iOS 与苹果的 Mac OS X 操作系统一样,属于类 Unix 的商业操作系统。

    85 引用 • 139 回帖 • 1 关注
  • PHP

    PHP(Hypertext Preprocessor)是一种开源脚本语言。语法吸收了 C 语言、 Java 和 Perl 的特点,主要适用于 Web 开发领域,据说是世界上最好的编程语言。

    179 引用 • 407 回帖 • 488 关注
  • GitLab

    GitLab 是利用 Ruby 一个开源的版本管理系统,实现一个自托管的 Git 项目仓库,可通过 Web 界面操作公开或私有项目。

    46 引用 • 72 回帖
  • VirtualBox

    VirtualBox 是一款开源虚拟机软件,最早由德国 Innotek 公司开发,由 Sun Microsystems 公司出品的软件,使用 Qt 编写,在 Sun 被 Oracle 收购后正式更名成 Oracle VM VirtualBox。

    10 引用 • 2 回帖 • 6 关注
  • TextBundle

    TextBundle 文件格式旨在应用程序之间交换 Markdown 或 Fountain 之类的纯文本文件时,提供更无缝的用户体验。

    1 引用 • 2 回帖 • 47 关注
  • DNSPod

    DNSPod 建立于 2006 年 3 月份,是一款免费智能 DNS 产品。 DNSPod 可以为同时有电信、网通、教育网服务器的网站提供智能的解析,让电信用户访问电信的服务器,网通的用户访问网通的服务器,教育网的用户访问教育网的服务器,达到互联互通的效果。

    6 引用 • 26 回帖 • 510 关注
  • 大数据

    大数据(big data)是指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。

    93 引用 • 113 回帖
  • TensorFlow

    TensorFlow 是一个采用数据流图(data flow graphs),用于数值计算的开源软件库。节点(Nodes)在图中表示数学操作,图中的线(edges)则表示在节点间相互联系的多维数据数组,即张量(tensor)。

    20 引用 • 19 回帖
  • Sym

    Sym 是一款用 Java 实现的现代化社区(论坛/BBS/社交网络/博客)系统平台。

    下一代的社区系统,为未来而构建

    524 引用 • 4601 回帖 • 700 关注
  • Bug

    Bug 本意是指臭虫、缺陷、损坏、犯贫、窃听器、小虫等。现在人们把在程序中一些缺陷或问题统称为 bug(漏洞)。

    75 引用 • 1737 回帖 • 5 关注
  • 职场

    找到自己的位置,萌新烦恼少。

    127 引用 • 1705 回帖 • 1 关注
  • HBase

    HBase 是一个分布式的、面向列的开源数据库,该技术来源于 Fay Chang 所撰写的 Google 论文 “Bigtable:一个结构化数据的分布式存储系统”。就像 Bigtable 利用了 Google 文件系统所提供的分布式数据存储一样,HBase 在 Hadoop 之上提供了类似于 Bigtable 的能力。

    17 引用 • 6 回帖 • 73 关注
  • Vim

    Vim 是类 UNIX 系统文本编辑器 Vi 的加强版本,加入了更多特性来帮助编辑源代码。Vim 的部分增强功能包括文件比较(vimdiff)、语法高亮、全面的帮助系统、本地脚本(Vimscript)和便于选择的可视化模式。

    29 引用 • 66 回帖
  • ActiveMQ

    ActiveMQ 是 Apache 旗下的一款开源消息总线系统,它完整实现了 JMS 规范,是一个企业级的消息中间件。

    19 引用 • 13 回帖 • 670 关注
  • 导航

    各种网址链接、内容导航。

    40 引用 • 173 回帖
  • 服务

    提供一个服务绝不仅仅是简单的把硬件和软件累加在一起,它包括了服务的可靠性、服务的标准化、以及对服务的监控、维护、技术支持等。

    41 引用 • 24 回帖 • 2 关注
  • 锤子科技

    锤子科技(Smartisan)成立于 2012 年 5 月,是一家制造移动互联网终端设备的公司,公司的使命是用完美主义的工匠精神,打造用户体验一流的数码消费类产品(智能手机为主),改善人们的生活质量。

    4 引用 • 31 回帖 • 4 关注
  • Dubbo

    Dubbo 是一个分布式服务框架,致力于提供高性能和透明化的 RPC 远程服务调用方案,是 [阿里巴巴] SOA 服务化治理方案的核心框架,每天为 2,000+ 个服务提供 3,000,000,000+ 次访问量支持,并被广泛应用于阿里巴巴集团的各成员站点。

    60 引用 • 82 回帖 • 595 关注
  • Hexo

    Hexo 是一款快速、简洁且高效的博客框架,使用 Node.js 编写。

    21 引用 • 140 回帖 • 1 关注