给初学者的 RxJava2.0 教程

本贴最后更新于 2925 天前,其中的信息可能已经沧海桑田

可能很多看过其他人写的文章的朋友都会觉得只有 Flowable 才能解决 Backpressure , 所以大家对这个 Flowable 都抱有很大的期许 , 其实呐 , 你们毕竟图样图森破 , 今天我们先抛开 Flowable, 仅仅依靠我们自己的 双手和智慧 , 来看看我们如何去治理 BackPressure , 通过本节的学习之后我们再来看 Flowable, 你会发现它其实并没有想象中那么牛叉, 它只是被其他人过度神化了.
看代码

Observable.create(new ObservableOnSubscribe() {
            @Override
            public void subscribe(ObservableEmitter emitter) throws Exception {
                for (int i = 0; ; i++) {  //无限循环发送事件
                    emitter.onNext(i);
                }
            }
        }).subscribeOn(Schedulers.io())
                .observeOn(AndroidSchedulers.mainThread())
                .subscribe(new Consumer() {
                    @Override
                    public void accept(Integer integer) throws Exception {
                        Log.d(TAG, "" + integer);
                    }
                });
Observable.create(new ObservableOnSubscribe() {
            @Override
            public void subscribe(ObservableEmitter emitter) throws Exception {
                for (int i = 0; ; i++) {
                    emitter.onNext(i);
                }
            }
        }).subscribeOn(Schedulers.io())
                .filter(new Predicate() {
                    @Override
                    public boolean test(Integer integer) throws Exception {
                        return integer % 10 == 0;
                    }
                })
                .observeOn(AndroidSchedulers.mainThread())
                .subscribe(new Consumer() {
                    @Override
                    public void accept(Integer integer) throws Exception {
                        Log.d(TAG, "" + integer);
                    }
                });

在这段代码中我们增加了一个 filter, 只允许能被 10 整除的事件通过, 再来看看运行结果:

filter.gif

可以看到, 虽然内存依然在增长, 但是增长速度相比之前, 已经减少了太多了, 至少在我录完 GIF 之前还没有爆掉内存, 大家可以试着改成能被 100 整除试试.

可以看到, 通过减少进入水缸的事件数量的确可以缓解 BackPressure, 但是力度还不够, 我们再来看一段代码:

Observable.create(new ObservableOnSubscribe() {
            @Override
            public void subscribe(ObservableEmitter emitter) throws Exception {
                for (int i = 0; ; i++) {
                    emitter.onNext(i);
                }
            }
        }).subscribeOn(Schedulers.io())
                .sample(2, TimeUnit.SECONDS)  //sample取样
                .observeOn(AndroidSchedulers.mainThread())
                .subscribe(new Consumer() {
                    @Override
                    public void accept(Integer integer) throws Exception {
                        Log.d(TAG, "" + integer);
                    }
                });

这里用了一个 sample 操作符, 简单做个介绍, 这个操作符每隔指定的时间就从上游中取出一个事件发送给下游. 这里我们让它每隔 2 秒取一个事件给下游, 来看看这次的运行结果吧:

sample.gif

这次我们可以看到, 虽然上游仍然一直在不停的发事件, 但是我们只是 每隔一定时间 取一个放进水缸里, 并没有全部放进水缸里, 因此这次内存仅仅只占用了 5M.

大家以后可以出去吹牛逼了: 我曾经通过技术手段去优化一个程序, 最终使得内存占用从 300 多 M 变成不到 5M. ~(≧▽≦)/~啦啦啦

前面这两种方法归根到底其实就是减少放进水缸的事件的数量, 是以 数量 取胜, 但是这个方法有个 缺点, 就是 丢失了大部分的事件.

那么我们换一个角度来思考, 既然上游发送事件的速度太快, 那我们就适当减慢发送事件的速度, 从 速度 上取胜, 听上去不错, 我们来试试:

Observable.create(new ObservableOnSubscribe() {
            @Override
            public void subscribe(ObservableEmitter emitter) throws Exception {
                for (int i = 0; ; i++) {
                    emitter.onNext(i);
                    Thread.sleep(2000);  //每次发送完事件延时2秒
                }
            }
        }).subscribeOn(Schedulers.io())
                .observeOn(AndroidSchedulers.mainThread())
                .subscribe(new Consumer() {
                    @Override
                    public void accept(Integer integer) throws Exception {
                        Log.d(TAG, "" + integer);
                    }
                });

这次我们让上游每次发送完事件后都延时了 2 秒, 来看看运行结果:

sleep.gif

完美 ! 一切都是那么完美 !

可以看到, 我们给上游加上延时了之后, 瞬间一头发情的公牛就变得跟只小绵羊一样, 如此温顺, 如此平静, 如此平稳的内存线, 美妙极了. 而且 事件也没有丢失, 上游 通过适当的 延时, 不但 减缓了 事件进入水缸的 速度, 也可以让 下游充足的时间 从水缸里取出事件来处理 , 这样一来, 就不至于导致大量的事件涌进水缸, 也就不会 OOM 啦.

到目前为止, 我们没有依靠任何其他的工具, 就轻易解决了 Backpressure 的问题.

因此我们总结一下, 治理 Backpressure 的办法就两种:

  • 一是从数量上进行治理, 减少发送进水缸里的事件
  • 二是从速度上进行治理, 减缓事件发送进水缸的速度

大家一定没忘记, 在上一节还有个 Zip 的例子, 这个例子也爆了我们的内存, 现学现用, 我们用刚学到的办法来试试能不能惩奸除恶, 先来看看第一种办法.

先来减少进入水缸的事件的数量:

Observable observable1 = Observable.create(new ObservableOnSubscribe() {
            @Override
            public void subscribe(ObservableEmitter emitter) throws Exception {
                for (int i = 0; ; i++) {
                    emitter.onNext(i);
                }
            }
        }).subscribeOn(Schedulers.io()).sample(2, TimeUnit.SECONDS); //进行sample采样

        Observable observable2 = Observable.create(new ObservableOnSubscribe() {
            @Override
            public void subscribe(ObservableEmitter emitter) throws Exception {
                emitter.onNext("A");
            }
        }).subscribeOn(Schedulers.io());

        Observable.zip(observable1, observable2, new BiFunction() {
            @Override
            public String apply(Integer integer, String s) throws Exception {
                return integer + s;
            }
        }).observeOn(AndroidSchedulers.mainThread()).subscribe(new Consumer() {
            @Override
            public void accept(String s) throws Exception {
                Log.d(TAG, s);
            }
        }, new Consumer() {
            @Override
            public void accept(Throwable throwable) throws Exception {
                Log.w(TAG, throwable);
            }
        });

来试试运行结果吧:

zip_sample.gif

哈哈, 成功了吧, 再来用第二种办法试试.

这次我们来减缓速度:

Observable observable1 = Observable.create(new ObservableOnSubscribe() {
            @Override
            public void subscribe(ObservableEmitter emitter) throws Exception {
                for (int i = 0; ; i++) {
                    emitter.onNext(i);
                    Thread.sleep(2000);  //发送事件之后延时2秒
                }
            }
        }).subscribeOn(Schedulers.io());

        Observable observable2 = Observable.create(new ObservableOnSubscribe() {
            @Override
            public void subscribe(ObservableEmitter emitter) throws Exception {
                emitter.onNext("A");
            }
        }).subscribeOn(Schedulers.io());

        Observable.zip(observable1, observable2, new BiFunction() {
            @Override
            public String apply(Integer integer, String s) throws Exception {
                return integer + s;
            }
        }).observeOn(AndroidSchedulers.mainThread()).subscribe(new Consumer() {
            @Override
            public void accept(String s) throws Exception {
                Log.d(TAG, s);
            }
        }, new Consumer() {
            @Override
            public void accept(Throwable throwable) throws Exception {
                Log.w(TAG, throwable);
            }
        });

来看看运行结果吧:

zip_sleep.gif

果然也成功了, 这里只打印出了下游收到的事件, 所以只有一个. 如果你对这个结果看不懂, 请自觉掉头看前面几篇文章.

通过本节的学习, 大家应该对如何处理 Backpressure 已经有了基本的认识了, 大家也可以看到, 我们并没有使用 Flowable, 就轻易的解决了背压的问题, 所以很多时候仔细去分析问题, 找到问题的原因, 从源头去解决才是最根本的办法. 后面我们讲到 Flowable 的时候, 大家就会发现它其实没什么神秘的, 它用到的办法和我们本节所讲的基本上是一样的, 只是它稍微做了点封装.

  • Java

    Java 是一种可以撰写跨平台应用软件的面向对象的程序设计语言,是由 Sun Microsystems 公司于 1995 年 5 月推出的。Java 技术具有卓越的通用性、高效性、平台移植性和安全性。

    3190 引用 • 8214 回帖 • 1 关注

相关帖子

欢迎来到这里!

我们正在构建一个小众社区,大家在这里相互信任,以平等 • 自由 • 奔放的价值观进行分享交流。最终,希望大家能够找到与自己志同道合的伙伴,共同成长。

注册 关于
请输入回帖内容 ...
cyd
愿你在平凡琐碎的生活里找到意义 深圳

推荐标签 标签

  • Webswing

    Webswing 是一个能将任何 Swing 应用通过纯 HTML5 运行在浏览器中的 Web 服务器,详细介绍请看 将 Java Swing 应用变成 Web 应用

    1 引用 • 15 回帖 • 637 关注
  • uTools

    uTools 是一个极简、插件化、跨平台的现代桌面软件。通过自由选配丰富的插件,打造你得心应手的工具集合。

    6 引用 • 14 回帖
  • CongSec

    本标签主要用于分享网络空间安全专业的学习笔记

    1 引用 • 1 回帖 • 17 关注
  • Kafka

    Kafka 是一种高吞吐量的分布式发布订阅消息系统,它可以处理消费者规模的网站中的所有动作流数据。 这种动作(网页浏览,搜索和其他用户的行动)是现代系统中许多功能的基础。 这些数据通常是由于吞吐量的要求而通过处理日志和日志聚合来解决。

    36 引用 • 35 回帖
  • Node.js

    Node.js 是一个基于 Chrome JavaScript 运行时建立的平台, 用于方便地搭建响应速度快、易于扩展的网络应用。Node.js 使用事件驱动, 非阻塞 I/O 模型而得以轻量和高效。

    139 引用 • 269 回帖 • 28 关注
  • 百度

    百度(Nasdaq:BIDU)是全球最大的中文搜索引擎、最大的中文网站。2000 年 1 月由李彦宏创立于北京中关村,致力于向人们提供“简单,可依赖”的信息获取方式。“百度”二字源于中国宋朝词人辛弃疾的《青玉案·元夕》词句“众里寻他千百度”,象征着百度对中文信息检索技术的执著追求。

    63 引用 • 785 回帖 • 164 关注
  • Typecho

    Typecho 是一款博客程序,它在 GPLv2 许可证下发行,基于 PHP 构建,可以运行在各种平台上,支持多种数据库(MySQL、PostgreSQL、SQLite)。

    12 引用 • 65 回帖 • 445 关注
  • 自由行
    4 关注
  • Vditor

    Vditor 是一款浏览器端的 Markdown 编辑器,支持所见即所得、即时渲染(类似 Typora)和分屏预览模式。它使用 TypeScript 实现,支持原生 JavaScript、Vue、React 和 Angular。

    354 引用 • 1823 回帖 • 1 关注
  • Postman

    Postman 是一款简单好用的 HTTP API 调试工具。

    4 引用 • 3 回帖 • 6 关注
  • Gitea

    Gitea 是一个开源社区驱动的轻量级代码托管解决方案,后端采用 Go 编写,采用 MIT 许可证。

    4 引用 • 16 回帖
  • 机器学习

    机器学习(Machine Learning)是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。

    83 引用 • 37 回帖
  • GitLab

    GitLab 是利用 Ruby 一个开源的版本管理系统,实现一个自托管的 Git 项目仓库,可通过 Web 界面操作公开或私有项目。

    46 引用 • 72 回帖
  • Chrome

    Chrome 又称 Google 浏览器,是一个由谷歌公司开发的网页浏览器。该浏览器是基于其他开源软件所编写,包括 WebKit,目标是提升稳定性、速度和安全性,并创造出简单且有效率的使用者界面。

    62 引用 • 289 回帖
  • 招聘

    哪里都缺人,哪里都不缺人。

    190 引用 • 1057 回帖
  • SOHO

    为成为自由职业者在家办公而努力吧!

    7 引用 • 55 回帖 • 6 关注
  • Mobi.css

    Mobi.css is a lightweight, flexible CSS framework that focus on mobile.

    1 引用 • 6 回帖 • 745 关注
  • Caddy

    Caddy 是一款默认自动启用 HTTPS 的 HTTP/2 Web 服务器。

    12 引用 • 54 回帖 • 158 关注
  • 面试

    面试造航母,上班拧螺丝。多面试,少加班。

    325 引用 • 1395 回帖
  • Java

    Java 是一种可以撰写跨平台应用软件的面向对象的程序设计语言,是由 Sun Microsystems 公司于 1995 年 5 月推出的。Java 技术具有卓越的通用性、高效性、平台移植性和安全性。

    3190 引用 • 8214 回帖 • 1 关注
  • 微服务

    微服务架构是一种架构模式,它提倡将单一应用划分成一组小的服务。服务之间互相协调,互相配合,为用户提供最终价值。每个服务运行在独立的进程中。服务于服务之间才用轻量级的通信机制互相沟通。每个服务都围绕着具体业务构建,能够被独立的部署。

    96 引用 • 155 回帖 • 1 关注
  • 国际化

    i18n(其来源是英文单词 internationalization 的首末字符 i 和 n,18 为中间的字符数)是“国际化”的简称。对程序来说,国际化是指在不修改代码的情况下,能根据不同语言及地区显示相应的界面。

    8 引用 • 26 回帖 • 1 关注
  • HTML

    HTML5 是 HTML 下一个的主要修订版本,现在仍处于发展阶段。广义论及 HTML5 时,实际指的是包括 HTML、CSS 和 JavaScript 在内的一套技术组合。

    107 引用 • 295 回帖
  • Love2D

    Love2D 是一个开源的, 跨平台的 2D 游戏引擎。使用纯 Lua 脚本来进行游戏开发。目前支持的平台有 Windows, Mac OS X, Linux, Android 和 iOS。

    14 引用 • 53 回帖 • 538 关注
  • PWL

    组织简介

    用爱发电 (Programming With Love) 是一个以开源精神为核心的民间开源爱好者技术组织,“用爱发电”象征开源与贡献精神,加入组织,代表你将遵守组织的“个人开源爱好者”的各项条款。申请加入:用爱发电组织邀请帖
    用爱发电组织官网:https://programmingwithlove.stackoverflow.wiki/

    用爱发电组织的核心驱动力:

    • 遵守开源守则,体现开源&贡献精神:以分享为目的,拒绝非法牟利。
    • 自我保护:使用适当的 License 保护自己的原创作品。
    • 尊重他人:不以各种理由、各种漏洞进行未经允许的抄袭、散播、洩露;以礼相待,尊重所有对社区做出贡献的开发者;通过他人的分享习得知识,要留下足迹,表示感谢。
    • 热爱编程、热爱学习:加入组织,热爱编程是首当其要的。我们欢迎热爱讨论、分享、提问的朋友,也同样欢迎默默成就的朋友。
    • 倾听:正确并恳切对待、处理问题与建议,及时修复开源项目的 Bug ,及时与反馈者沟通。不抬杠、不无视、不辱骂。
    • 平视:不诋毁、轻视、嘲讽其他开发者,主动提出建议、施以帮助,以和谐为本。只要他人肯努力,你也可能会被昔日小看的人所超越,所以请保持谦虚。
    • 乐观且活跃:你的努力决定了你的高度。不要放弃,多年后回头俯瞰,才会发现自己已经成就往日所仰望的水平。积极地将项目开源,帮助他人学习、改进,自己也会获得相应的提升、成就与成就感。
    1 引用 • 487 回帖 • 2 关注
  • 电影

    这是一个不能说的秘密。

    121 引用 • 604 回帖
  • 单点登录

    单点登录(Single Sign On)是目前比较流行的企业业务整合的解决方案之一。SSO 的定义是在多个应用系统中,用户只需要登录一次就可以访问所有相互信任的应用系统。

    9 引用 • 25 回帖