HashMap 是 java 中常用且相对重要的类之一。了解此类的数据结构及储存原理对我们写程序有莫大帮助。java8 中又对此类底层实现进行了优化,比如引入了红黑树的结构以解决哈希碰撞。今天我们就从底层解析一下 HashMap,希望对大家有所帮助。
HashMap 的数据结构
1. HashMap 整体结构
Map 是 java 中的储存键(key)、值(value)对数据结构。而 HashMap 即是通过 key 的 hash 值确定 value 的储存位置。在理想情况下,仅需要 O(1)的时间就可以通过 key 定位到 value 值。不过,这里一个显著的问题是,不同的 key 也可能有相同的哈希值,HashMap 采用数组 + 链表解决。
如图,HashMap 的主结构类似于一个数组,添加值时通过 key 确定储存位置。每个位置是一个 Node(图中黑点)的数据结构,该结构可组成链表。当发生冲突时,相同 hash 值的键值对会组成链表。
这种数组 + 链表的组合形式大部分情况下都能有不错的性能效果,java6、7 就是这样设计的。然而,在极端情况下,一组(比如经过精心设计的)键值对都发生了冲突,这时的哈希结构就会退化成一个链表,使 HashMap 性能急剧下降。
所以在 java8 中,HashMap 的结构实现变为数组 + 链表 + 红黑树。如图:
当链表达到一定长度,会将链表转为红黑树。我们知道链表的查询时间为 O(n),而红黑树的查询时间为 O(logN)。当长度大到一定程度时,红黑树的优势会更加明显。
2. 类概览
在具体实现上,HashMap 有许多内部类、方法及字段。下面列举一些比较重要的。
//默认Map容量
static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // aka 16
//默认负载因子
static final float DEFAULT_LOAD_FACTOR = 0.75f;
//链表转为红黑树的临界值
static final int TREEIFY_THRESHOLD = 8;
//数组,HashMap的主要储存结构
transient Node<K,V>[] table;
//节点,即HashMap的键值对的储存结构
static class Node<K,V> implements Map.Entry<K,V>
//红黑树节点
static final class TreeNode<K,V> extends LinkedHashMap.Entry<K,V>
//用于计算key的哈希值
static final int hash(Object key)
//添加新键值对
public V put(K key, V value)
//删除键值对
public boolean remove(Object key, Object value)
3. Node<K,V> 结构
Node<K,V> 是 HashMap 的内部类,也是其键值对的底层实现。类声明如下:
static class Node<K,V> implements Map.Entry<K,V> {
final int hash;
final K key;
V value;
Node<K,V> next; //指向该链表的下一个node
Node(int hash, K key, V value, Node<K,V> next) {}
public final K getKey() {}
public final V getValue() {}
public final String toString() {}
public final int hashCode() {}
public final V setValue(V newValue) {}
public final boolean equals(Object o) {}
}
如此,HashMap 的数组 + 链表结构就大致成形了,Node[]为数组,而 Node 又可连成链表。
4. TreeNode<K,V> 红黑树结构
TreeNode<K,V> 是红黑树的结构实现,类声明如下:
static final class TreeNode<K,V> extends LinkedHashMap.Entry<K,V> {
TreeNode<K,V> parent; // red-black tree links
TreeNode<K,V> left;
TreeNode<K,V> right;
TreeNode<K,V> prev; // needed to unlink next upon deletion
boolean red;
TreeNode(int hash, K key, V val, Node<K,V> next) {}
//以下省略其他方法
}
红黑树结构包含前、后、左、右节点,以及标志是否为红黑树的字段。此结构是 java8 新加的。
HashMap 的实现
Put 的实现
某一键值对 <K,V>,添加到 map 中。
工作流程可概括为以下几点:
- 根据 K 的哈希算法确定该键值对在数组(HashMap)中的索引位置 x。
- 若索引位置 x 为空,将 <K,V> 添加于此,结束。若 x 不为空,转向 3
- 判断 x 处的值是否等于 V,若等于,用 V 覆盖原值。结束。否则,转向 4
- 在 x 处遍历链表,并在尾部插入 <K,V>。判断链表长度是否大于
TREEIFY_THRESHOLD
,若小于,结束。若大于,将该链表转为红黑树结构,结束。
下面我们结合代码详细分析一下此过程。
1. 通过 hash 值定位元素位置
对于通过 hash 定位储存的 Map,哈希算法对其性能有很大影响。好的哈希算法可以尽可能避免冲突的发生,使读取效率保持在 O(1),下面是 HashMap 的哈希过程。
为表述方面,键值对设为("hello","world")。put 方法源码为
public V put(K key, V value) {
return putVal(hash(key), key, value, false, true);
}
由此可见,先对 hello
进行哈希操作。hash()源码为
static final int hash(Object key) {
int h;
return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
}
随后,put()过程中有一步异或操作。
i = (n - 1) & hash
n 是 HashMap 底层数组的长度,当 n 为 2 的次方时,(n-1)&hash
等价于 n%hash
,可确保得到的值落在数组索引范围内。
例如,对 hello
进行哈希计算为 99163451
。进行索引计算为 11
,即(hello
,world
)会落在数组索引为 11 的位置。
2. put 过程
废话不说,先上代码
final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
boolean evict) {
Node<K,V>[] tab; Node<K,V> p; int n, i;
if ((tab = table) == null || (n = tab.length) == 0)
n = (tab = resize()).length; //若底层数组还没有元素,先扩容
if ((p = tab[i = (n - 1) & hash]) == null) //这就是前面提到的索引的计算,判断此位置是否有值。
tab[i] = newNode(hash, key, value, null); //若此位置无值,添加节点,对应步骤2
else {
Node<K,V> e; K k;
if (p.hash == hash &&
((k = p.key) == key || (key != null && key.equals(k))))
e = p; //若此位置有值,且与要添加的值相等,覆盖,对应步骤3
else if (p instanceof TreeNode) //这里查看节点类型,若是TreeNode,说明已经是红黑树,调用红黑树添加节点即可。
e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
else { //仍是链表,遍历,若发现有值相同的,覆盖,否则直接将节点加在链表最后。
for (int binCount = 0; ; ++binCount) {
if ((e = p.next) == null) { //若其后无值了,在后面添加要添加的节点
p.next = newNode(hash, key, value, null);
if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
treeifyBin(tab, hash); //判断链表长度是否足够转为红黑树
break;
}
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
break; //若遍历过程中发现有与添加的值相同,覆盖
p = e;
}
}
if (e != null) { // existing mapping for key
V oldValue = e.value;
if (!onlyIfAbsent || oldValue == null)
e.value = value;
afterNodeAccess(e);
return oldValue;
}
}
++modCount;
if (++size > threshold)
resize(); //若长度超过扩容阈值,进行扩容。
afterNodeInsertion(evict);
return null;
}
3. 扩容
当初始化数组或数组大小到达一定程度时,都会引发扩容机制。
final Node<K,V>[] resize() {
Node<K,V>[] oldTab = table;
int oldCap = (oldTab == null) ? 0 : oldTab.length;
int oldThr = threshold;
int newCap, newThr = 0;
//根据情况判断新数组大小
if (oldCap > 0) {
if (oldCap >= MAXIMUM_CAPACITY) { //若容量已超过最大值,已无法扩容
threshold = Integer.MAX_VALUE;
return oldTab;
}
else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
oldCap >= DEFAULT_INITIAL_CAPACITY)
newThr = oldThr << 1; //否则,扩大为原来2倍
}
else if (oldThr > 0) // initial capacity was placed in threshold
newCap = oldThr;
else { // oldCap、oldThr为0时默认为初始值
newCap = DEFAULT_INITIAL_CAPACITY;
newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
}
if (newThr == 0) {
float ft = (float)newCap * loadFactor;
newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
(int)ft : Integer.MAX_VALUE);
}
threshold = newThr;
@SuppressWarnings({"rawtypes","unchecked"})
Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap]; //构建新数组
table = newTab;
if (oldTab != null) { //将旧的值移到新数组中
for (int j = 0; j < oldCap; ++j) {
Node<K,V> e;
if ((e = oldTab[j]) != null) {
oldTab[j] = null;
if (e.next == null) //若该位置有值且只有一个(不是链表或红黑树)
newTab[e.hash & (newCap - 1)] = e;
else if (e instanceof TreeNode) //若是红黑树
((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
else { // 若是链表
Node<K,V> loHead = null, loTail = null;
Node<K,V> hiHead = null, hiTail = null;
Node<K,V> next;
do {
next = e.next;
if ((e.hash & oldCap) == 0) {
if (loTail == null)
loHead = e;
else
loTail.next = e;
loTail = e;
}
else {
if (hiTail == null)
hiHead = e;
else
hiTail.next = e;
hiTail = e;
}
} while ((e = next) != null);
if (loTail != null) {
loTail.next = null;
newTab[j] = loHead;
}
if (hiTail != null) {
hiTail.next = null;
newTab[j + oldCap] = hiHead;
}
}
}
}
}
return newTab;
}
有关红黑树及链表重新扩容的算法在下篇文章中会有介绍,HashMap 扩容的大致流程如上面注解那样,需考虑当前容量及数据结构。
4.java8 的性能优化
HashMap 经 java8 的优化后,解决了哈希碰撞的问题。在哈希均匀分布的情况下,java7 和 java8 对 HashMap 的性能测试中表现类似,而在哈希极端分布的情况下,java8 的 HashMap 具有明显的性能优势。所以,如果可以的话,应选用 java8 的 HashMap。
--------------全文完------------------
欢迎来到这里!
我们正在构建一个小众社区,大家在这里相互信任,以平等 • 自由 • 奔放的价值观进行分享交流。最终,希望大家能够找到与自己志同道合的伙伴,共同成长。
注册 关于