机器学习 (8)——支持向量机 (SVM)

本贴最后更新于 2613 天前,其中的信息可能已经时过境迁

0x00 支持向量机

在机器学习中,支持向量机(support vector machine,常简称为 SVM,又名支持向量网络)是在分类与回归分析中分析数据的监督式学习模型与相关的学习算法。给定一组训练实例,每个训练实例被标记为属于两个类别中的一个或另一个,SVM 训练算法建立一个将新的实例分配给两个类别之一的模型,使其成为非概率二元(binary classifier)线性分类器。SVM 模型是将实例表示为空间中的点,这样映射就使得单独类别的实例被尽可能宽的明显的间隔分开。然后,将新的实例映射到同一空间,并基于它们落在间隔的哪一侧来预测所属类别。

0x01 间隔与支持向量
首先看一张图:

如果要用一条直线将两种类型的图形分开,那这样的直线我们可以找到很多条。那么哪条才是最好的分割线?

我们可以设想一下,目前的样本并不代表所有可能发生的情况,如果进入新样本,很有可能会存在向直线贴近的样本,那么如果选择的直线到两边最近的点间隔越长,输入新样本时越过这条线的机会就越小,泛化能力就越强。

图中距离这条分割线最近的这几个点,就被称为支持向量。

两个异类支持向量到这条直线的距离之和,就被称为间隔。

假设我们分割线的方程如下:

其中 w 是法向量。

我们的可以通过它将训练样本正确分类,即

留出间隔,令:

则间隔的数学表示为:

我们为了找到最大间隔,也就是使 γ 最大,也就是使 ||w||² 最小,就可以转换成找

的最小值。这被称为支持向量机的基本型。
0x02 对偶问题

上面的问题最终转换成求支持向量机基本型的最小值问题,这是一个凸二次规划问题,可以直接求解,但是我们有更优的计算方法。那就是通过拉格朗日乘子法得到其”对偶问题“。

具体做法是对每条约束都增加拉格朗日乘子 αi,则该问题可以写成:

这个时候要求其最小值,从之前转换成最小值的模型前加了 1/2 这点就可以想到,我们接下来肯定要通过求导,求导数零点,找极值点来完成。

所以分别对 w 和 b 求导可以得出:

将其结论代回 L 中可得对偶问题:

这个结果,我们就可以直接交给机器去处理数据求这个式子的最大值了。

0x03 核函数

线性可分的训练样本我们可以通过直线将其正确分类,但是如果遇到线性不可分的训练样本,或许就不能通过一条直线来进行分割。

这种情况下,我们可以将样本从原本的空间映射到一个更高维度的空间,使样本在这个空间内线性可分。

比如二维平面中的样本投影到三维空间中,就可以通过一个超平面线性分割两类样本了:

具体做法是用 Φ(x)代表 x 映射之后的特征向量,对偶问题就变为:

在计算 Φ(xi)的转置与 Φ(xj)的矩阵乘积时,在高维会变的十分困难,所以就引入了:

Φ(xi)与 Φ(xj)内积等于它们在原始样本空间通过 k 函数计算的结果,这样就不用去高维计算内积。这个 k 函数就被称为核函数。

常用的核函数如下:

并不是所有的情况通过核函数映射之后都是线性可分的,我们会根据实际的情况去选取合适的核函数,使其映射到高维之后可以分割,然后高维分割的超平面在原始平面上的投影就是在原始平面上的分割曲线。

0x04 硬间隔和软间隔

即使使用了核函数,实际中,我们仍然存在一种不可分的情况,即两类样本互相有一部分出现在对方的区域,如图:

那么这种情况,我们的处理方式就是允许支持向量机在一些样本上出错,也就是“软间隔”。

对应的所有样本都被正确分类就被称为“硬间隔”。

在之前机器学习的经验中我们都明白,出错就会有损失,那么我们需要一个损失函数来计算惩罚,最终的优化目标是在最大化间隔的同时使不满足约束的样本尽可能少,可写为:

这里面使用的损失函数是 0/1 损失函数:

我们也有其他几种替代损失函数可供选择:

在软间隔情况中,只使满足最终优化目标的值优化到最小即可。

0x05 支持向量机的优缺点

支持向量机的优势在于:

  • 在高维空间中非常高效
  • 即使在数据维度比样本数量大的情况下仍然有效
  • 在决策函数(称为支持向量)中使用训练集的子集,因此它也是高效利用内存的
  • 通用性: 不同的核函数 核函数与特定的决策函数一一对应,常见的 kernel 已

经提供,也可以指定定制的内核

支持向量机的缺点包括:

  • 如果特征数量比样本数量大得多,在选择核函数 核函数 时要避免过拟合,

而且正则化项是非常重要的

  • 支持向量机不直接提供概率估计
  • 机器学习

    机器学习(Machine Learning)是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。

    78 引用 • 37 回帖

相关帖子

欢迎来到这里!

我们正在构建一个小众社区,大家在这里相互信任,以平等 • 自由 • 奔放的价值观进行分享交流。最终,希望大家能够找到与自己志同道合的伙伴,共同成长。

注册 关于
请输入回帖内容 ...

推荐标签 标签

  • Vim

    Vim 是类 UNIX 系统文本编辑器 Vi 的加强版本,加入了更多特性来帮助编辑源代码。Vim 的部分增强功能包括文件比较(vimdiff)、语法高亮、全面的帮助系统、本地脚本(Vimscript)和便于选择的可视化模式。

    29 引用 • 66 回帖
  • GitBook

    GitBook 使您的团队可以轻松编写和维护高质量的文档。 分享知识,提高团队的工作效率,让用户满意。

    3 引用 • 8 回帖
  • 电影

    这是一个不能说的秘密。

    125 引用 • 610 回帖
  • OAuth

    OAuth 协议为用户资源的授权提供了一个安全的、开放而又简易的标准。与以往的授权方式不同之处是 oAuth 的授权不会使第三方触及到用户的帐号信息(如用户名与密码),即第三方无需使用用户的用户名与密码就可以申请获得该用户资源的授权,因此 oAuth 是安全的。oAuth 是 Open Authorization 的简写。

    36 引用 • 103 回帖 • 44 关注
  • 持续集成

    持续集成(Continuous Integration)是一种软件开发实践,即团队开发成员经常集成他们的工作,通过每个成员每天至少集成一次,也就意味着每天可能会发生多次集成。每次集成都通过自动化的构建(包括编译,发布,自动化测试)来验证,从而尽早地发现集成错误。

    15 引用 • 7 回帖
  • 又拍云

    又拍云是国内领先的 CDN 服务提供商,国家工信部认证通过的“可信云”,乌云众测平台认证的“安全云”,为移动时代的创业者提供新一代的 CDN 加速服务。

    20 引用 • 37 回帖 • 577 关注
  • Office

    Office 现已更名为 Microsoft 365. Microsoft 365 将高级 Office 应用(如 Word、Excel 和 PowerPoint)与 1 TB 的 OneDrive 云存储空间、高级安全性等结合在一起,可帮助你在任何设备上完成操作。

    6 引用 • 35 回帖
  • 一些有用的避坑指南。

    69 引用 • 93 回帖
  • IDEA

    IDEA 全称 IntelliJ IDEA,是一款 Java 语言开发的集成环境,在业界被公认为最好的 Java 开发工具之一。IDEA 是 JetBrains 公司的产品,这家公司总部位于捷克共和国的首都布拉格,开发人员以严谨著称的东欧程序员为主。

    182 引用 • 400 回帖 • 1 关注
  • B3log

    B3log 是一个开源组织,名字来源于“Bulletin Board Blog”缩写,目标是将独立博客与论坛结合,形成一种新的网络社区体验,详细请看 B3log 构思。目前 B3log 已经开源了多款产品:SymSoloVditor思源笔记

    1062 引用 • 3456 回帖 • 124 关注
  • C++

    C++ 是在 C 语言的基础上开发的一种通用编程语言,应用广泛。C++ 支持多种编程范式,面向对象编程、泛型编程和过程化编程。

    110 引用 • 153 回帖
  • Flutter

    Flutter 是谷歌的移动 UI 框架,可以快速在 iOS 和 Android 上构建高质量的原生用户界面。 Flutter 可以与现有的代码一起工作,它正在被越来越多的开发者和组织使用,并且 Flutter 是完全免费、开源的。

    39 引用 • 92 回帖 • 16 关注
  • OpenCV
    15 引用 • 36 回帖 • 1 关注
  • OpenStack

    OpenStack 是一个云操作系统,通过数据中心可控制大型的计算、存储、网络等资源池。所有的管理通过前端界面管理员就可以完成,同样也可以通过 Web 接口让最终用户部署资源。

    10 引用 • 8 关注
  • PHP

    PHP(Hypertext Preprocessor)是一种开源脚本语言。语法吸收了 C 语言、 Java 和 Perl 的特点,主要适用于 Web 开发领域,据说是世界上最好的编程语言。

    167 引用 • 408 回帖 • 494 关注
  • Markdown

    Markdown 是一种轻量级标记语言,用户可使用纯文本编辑器来排版文档,最终通过 Markdown 引擎将文档转换为所需格式(比如 HTML、PDF 等)。

    173 引用 • 1559 回帖
  • 大数据

    大数据(big data)是指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。

    91 引用 • 113 回帖
  • 笔记

    好记性不如烂笔头。

    315 引用 • 790 回帖
  • golang

    Go 语言是 Google 推出的一种全新的编程语言,可以在不损失应用程序性能的情况下降低代码的复杂性。谷歌首席软件工程师罗布派克(Rob Pike)说:我们之所以开发 Go,是因为过去 10 多年间软件开发的难度令人沮丧。Go 是谷歌 2009 发布的第二款编程语言。

    502 引用 • 1397 回帖 • 241 关注
  • OneDrive
    2 引用 • 2 关注
  • 深度学习

    深度学习(Deep Learning)是机器学习的分支,是一种试图使用包含复杂结构或由多重非线性变换构成的多个处理层对数据进行高层抽象的算法。

    45 引用 • 44 回帖 • 2 关注
  • Sillot

    Insights(注意当前设置 master 为默认分支)

    汐洛彖夲肜矩阵(Sillot T☳Converbenk Matrix),致力于服务智慧新彖乄,具有彖乄驱动、极致优雅、开发者友好的特点。其中汐洛绞架(Sillot-Gibbet)基于自思源笔记(siyuan-note),前身是思源笔记汐洛版(更早是思源笔记汐洛分支),是智慧新录乄终端(多端融合,移动端优先)。

    主仓库地址:Hi-Windom/Sillot

    文档地址:sillot.db.sc.cn

    注意事项:

    1. ⚠️ 汐洛仍在早期开发阶段,尚不稳定
    2. ⚠️ 汐洛并非面向普通用户设计,使用前请了解风险
    3. ⚠️ 汐洛绞架基于思源笔记,开发者尽最大努力与思源笔记保持兼容,但无法实现 100% 兼容
    29 引用 • 25 回帖 • 152 关注
  • Spark

    Spark 是 UC Berkeley AMP lab 所开源的类 Hadoop MapReduce 的通用并行框架。Spark 拥有 Hadoop MapReduce 所具有的优点;但不同于 MapReduce 的是 Job 中间输出结果可以保存在内存中,从而不再需要读写 HDFS,因此 Spark 能更好地适用于数据挖掘与机器学习等需要迭代的 MapReduce 的算法。

    74 引用 • 46 回帖 • 563 关注
  • Word
    13 引用 • 41 回帖 • 1 关注
  • Java

    Java 是一种可以撰写跨平台应用软件的面向对象的程序设计语言,是由 Sun Microsystems 公司于 1995 年 5 月推出的。Java 技术具有卓越的通用性、高效性、平台移植性和安全性。

    3206 引用 • 8217 回帖
  • CAP

    CAP 指的是在一个分布式系统中, Consistency(一致性)、 Availability(可用性)、Partition tolerance(分区容错性),三者不可兼得。

    12 引用 • 5 回帖 • 660 关注
  • 资讯

    资讯是用户因为及时地获得它并利用它而能够在相对短的时间内给自己带来价值的信息,资讯有时效性和地域性。

    56 引用 • 85 回帖 • 1 关注