Bystack 跨链技术源码解读

本贴最后更新于 2077 天前,其中的信息可能已经事过景迁

Bystack 是由比原链团队提出的一主多侧链架构的 BaaS 平台。其将区块链应用分为三层架构:底层账本层,侧链扩展层,业务适配层。底层账本层为 Layer1,即为目前比较成熟的采用 POW 共识的 Bytom 公链。侧链扩展层为 Layer2,为多侧链层,vapor 侧链即处于 Layer2。

图片来自 Bystack 白皮书

Vapor 侧链采用 DPOS 和 BBFT 共识,TPS 可以达到数万。此处就分析一下连接 Bytom 主链和 Vapor 侧链的跨链模型。

主侧链协同工作模型

1、技术细节

POW 当前因为能源浪费而饱受诟病,而且 POW 本身在提高 TPS 的过程中遇到诸多问题,理论上可以把块变大,可以往块里面塞更多的交易。TPS 是每秒出块数*块里面的交易数。但是也存在问题:小节点吃不消存储这么大的容量的内容,会慢慢变成中心化的模式,因为只有大财团和大机构才有财力去组建机房设备,成为能出块的节点。同时传输也存在问题,网络带宽是有限的,块的大小与网络传输的边际是有关的,不可能无限的去增加块的大小,网络边际上的人拿不到新块的信息,也会降低去中心化的程度,这就是为什么 POW 不能在提高可靠性的情况下,提高 TPS 的原因。

而 BFT 虽然去中心化较弱,但其效率和吞吐量高,也不需要大量的共识计算,非常环保节能,很符合 Bystack 侧链高 TPS 的性能需求

(1)跨链模型架构

在 Bystack 的主侧链协同工作模型中,包括有主链、侧链和 Federation。主链为 bytom,采用基于对 AI 计算友好型 PoW(工作量证明)算法,主要负责价值锚定,价值传输和可信存证。侧链为 Vapor,采用 DPOS+BBFT 共识,高 TPS 满足垂直领域业务。主链和侧链之间的资产流通主要依靠 Federation。

(2)节点类型

跨链模型中的节点主要有收集人、验证人和联邦成员。收集人监控联邦地址,收集交易后生成 Claim 交易进行跨链。验证人则是侧链的出块人。联邦成员由侧链的用户投票通过选举产生,负责生成新的联邦合约地址。

(3)跨链交易流程

主链到侧链

主链用户将代币发送至联邦合约地址,收集人监控联邦地址,发现跨链交易后生成 Claim 交易,发送至侧链

侧链到主链

侧链用户发起提现交易,销毁侧链资产。收集人监控侧链至主链交易,向主链地址发送对应数量资产。最后联邦在侧链生成一笔完成提现的操作交易。

2、代码解析

跨链代码主要处于 federation 文件夹下,这里就这部分代码进行一个介绍。

(1)keeper 启动

整个跨链的关键在于同步主链和侧链的区块,并处理区块中的跨链交易。这部份代码主要在 mainchain_keerper.go 和 sidechain_keerper.go 两部分中,分别对应处理主链和侧链的区块。keeper 在 Run 函数中启动。

func (m *mainchainKeeper) Run() { ticker := time.NewTicker(time.Duration(m.cfg.SyncSeconds) * time.Second) for ; true; <-ticker.C { for { isUpdate, err := m.syncBlock() if err != nil { //.. } if !isUpdate { break } } } }

Run 函数中首先生成一个定时的 Ticker,规定每隔 SyncSeconds 秒同步一次区块,处理区块中的交易。

(2)主侧链同步区块

Run 函数会调用 syncBlock 函数同步区块。

func (m *mainchainKeeper) syncBlock() (bool, error) { chain := &orm.Chain{Name: m.chainName} if err := m.db.Where(chain).First(chain).Error; err != nil { return false, errors.Wrap(err, "query chain") } height, err := m.node.GetBlockCount() //.. if height <= chain.BlockHeight+m.cfg.Confirmations { return false, nil } nextBlockStr, txStatus, err := m.node.GetBlockByHeight(chain.BlockHeight + 1) //.. nextBlock := &types.Block{} if err := nextBlock.UnmarshalText([]byte(nextBlockStr)); err != nil { return false, errors.New("Unmarshal nextBlock") } if nextBlock.PreviousBlockHash.String() != chain.BlockHash { //... return false, ErrInconsistentDB } if err := m.tryAttachBlock(chain, nextBlock, txStatus); err != nil { return false, err } return true, nil }

这个函数受限会根据 chainName 从数据库中取出对应的 chain。然后利用 GetBlockCount 函数获得 chain 的高度。然后进行一个伪确定性的检测。

height <= chain.BlockHeight+m.cfg.Confirmations

主要是为了判断链上的资产是否已经不可逆。这里 Confirmations 的值被设为 10。如果不进行这个等待不可逆的过程,很可能主链资产跨链后,主链的最长链改变,导致这笔交易没有在主链被打包,而侧链却增加了相应的资产。在此之后,通过 GetBlockByHeight 函数获得 chain 的下一个区块。

nextBlockStr, txStatus, err := m.node.GetBlockByHeight(chain.BlockHeight + 1)

这里必须满足下个区块的上一个区块哈希等于当前 chain 中的这个头部区块哈希。这也符合区块链的定义。

if nextBlock.PreviousBlockHash.String() != chain.BlockHash { //.. }

在此之后,通过调用 tryAttachBlock 函数进一步调用 processBlock 函数处理区块。

(3)区块处理

processBlock 函数会判断区块中交易是否为跨链的 deposit 或者是 withdraw,并分别调用对应的函数去进行处理。

func (m *mainchainKeeper) processBlock(chain *orm.Chain, block *types.Block, txStatus *bc.TransactionStatus) error { if err := m.processIssuing(block.Transactions); err != nil { return err } for i, tx := range block.Transactions { if m.isDepositTx(tx) { if err := m.processDepositTx(chain, block, txStatus, uint64(i), tx); err != nil { return err } } if m.isWithdrawalTx(tx) { if err := m.processWithdrawalTx(chain, block, uint64(i), tx); err != nil { return err } } } return m.processChainInfo(chain, block) }

在这的 processIssuing 函数,它内部会遍历所有交易输入 Input 的资产类型,也就是 AssetID。当这个 AssetID 不存在的时候,则会去在系统中创建一个对应的资产类型。每个 Asset 对应的数据结构如下所示。

m.assetStore.Add(&orm.Asset{ AssetID: assetID.String(), IssuanceProgram: hex.EncodeToString(inp.IssuanceProgram), VMVersion: inp.VMVersion, RawDefinitionByte: hex.EncodeToString(inp.AssetDefinition), })

在 processBlock 函数中,还会判断区块中每笔交易是否为跨链交易。主要通过 isDepositTx 和 isWithdrawalTx 函数进行判断。

func (m *mainchainKeeper) isDepositTx(tx *types.Tx) bool { for _, output := range tx.Outputs { if bytes.Equal(output.OutputCommitment.ControlProgram, m.fedProg) { return true } } return false } func (m *mainchainKeeper) isWithdrawalTx(tx *types.Tx) bool { for _, input := range tx.Inputs { if bytes.Equal(input.ControlProgram(), m.fedProg) { return true } } return false }

看一下这两个函数,主要还是通过比较交易中的 control program 这个标识和 mainchainKeeper 这个结构体中的 fedProg 进行比较,如果相同则为跨链交易。fedProg 在结构体中为一个字节数组。

type mainchainKeeper struct { cfg *config.Chain db *gorm.DB node *service.Node chainName string assetStore *database.AssetStore fedProg []byte }

(4)跨链交易(主链到侧链的 deposit)处理

这部分主要分为主链到侧链的 deposit 和侧链到主链的 withdraw。先看比较复杂的主链到侧链的 deposit 这部分代码的处理。

func (m *mainchainKeeper) processDepositTx(chain *orm.Chain, block *types.Block, txStatus *bc.TransactionStatus, txIndex uint64, tx *types.Tx) error { //.. rawTx, err := tx.MarshalText() if err != nil { return err } ormTx := &orm.CrossTransaction{ //.. } if err := m.db.Create(ormTx).Error; err != nil { return errors.Wrap(err, fmt.Sprintf("create mainchain DepositTx %s", tx.ID.String())) } statusFail := txStatus.VerifyStatus[txIndex].StatusFail crossChainInputs, err := m.getCrossChainReqs(ormTx.ID, tx, statusFail) if err != nil { return err } for _, input := range crossChainInputs { if err := m.db.Create(input).Error; err != nil { return errors.Wrap(err, fmt.Sprintf("create DepositFromMainchain input: txid(%s), pos(%d)", tx.ID.String(), input.SourcePos)) } } return nil }

这里它创建了一个跨链交易 orm。具体的结构如下。可以看到,这里它的结构体中包括有 source 和 dest 的字段。

ormTx := &orm.CrossTransaction{ ChainID: chain.ID, SourceBlockHeight: block.Height, SourceBlockTimestamp: block.Timestamp, SourceBlockHash: blockHash.String(), SourceTxIndex: txIndex, SourceMuxID: muxID.String(), SourceTxHash: tx.ID.String(), SourceRawTransaction: string(rawTx), DestBlockHeight: sql.NullInt64{Valid: false}, DestBlockTimestamp: sql.NullInt64{Valid: false}, DestBlockHash: sql.NullString{Valid: false}, DestTxIndex: sql.NullInt64{Valid: false}, DestTxHash: sql.NullString{Valid: false}, Status: common.CrossTxPendingStatus, }

创建这笔跨链交易后,它会将交易存入数据库中。

if err := m.db.Create(ormTx).Error; err != nil { return errors.Wrap(err, fmt.Sprintf("create mainchain DepositTx %s", tx.ID.String())) }

在此之后,这里会调用 getCrossChainReqs。这个函数内部较为复杂,主要作用就是遍历交易的输出,返回一个跨链交易的请求数组。具体看下这个函数。

func (m *mainchainKeeper) getCrossChainReqs(crossTransactionID uint64, tx *types.Tx, statusFail bool) ([]*orm.CrossTransactionReq, error) { //.. switch { case segwit.IsP2WPKHScript(prog): //.. case segwit.IsP2WSHScript(prog): //.. } reqs := []*orm.CrossTransactionReq{} for i, rawOutput := range tx.Outputs { //.. req := &orm.CrossTransactionReq{ //.. } reqs = append(reqs, req) } return reqs, nil }

很显然,这个地方的交易类型有 pay to public key hash 和 pay to script hash 这两种。这里会根据不同的交易类型进行一个地址的获取。

switch { case segwit.IsP2WPKHScript(prog): if pubHash, err := segwit.GetHashFromStandardProg(prog); err == nil { fromAddress = wallet.BuildP2PKHAddress(pubHash, &vaporConsensus.MainNetParams) toAddress = wallet.BuildP2PKHAddress(pubHash, &vaporConsensus.VaporNetParams) } case segwit.IsP2WSHScript(prog): if scriptHash, err := segwit.GetHashFromStandardProg(prog); err == nil { fromAddress = wallet.BuildP2SHAddress(scriptHash, &vaporConsensus.MainNetParams) toAddress = wallet.BuildP2SHAddress(scriptHash, &vaporConsensus.VaporNetParams) } }

在此之后,函数会遍历所有交易的输出,然后创建跨链交易请求,具体的结构如下。

req := &orm.CrossTransactionReq{ CrossTransactionID: crossTransactionID, SourcePos: uint64(i), AssetID: asset.ID, AssetAmount: rawOutput.OutputCommitment.AssetAmount.Amount, Script: script, FromAddress: fromAddress, ToAddress: toAddress, }

创建完所有的跨链交易请求后,返回到 processDepositTx 中一个 crossChainInputs 数组中,并存入 db。

for _, input := range crossChainInputs { if err := m.db.Create(input).Error; err != nil { return errors.Wrap(err, fmt.Sprintf("create DepositFromMainchain input: txid(%s), pos(%d)", tx.ID.String(), input.SourcePos)) } }

到这里,对主链到侧链的 deposit 已经处理完毕。

(5)跨链交易(侧链到主链的 withdraw)交易处理

这部分比较复杂的逻辑主要在 sidechain_keeper.go 中的 processWithdrawalTx 函数中。这部分逻辑和上面主链到侧链的 deposit 逻辑类似。同样是创建了 orm.crossTransaction 结构体,唯一的改变就是交易的 souce 和 dest 相反。这里就不作具体描述了。

3、跨链优缺点

优点

(1) 跨链模型、代码较为完整。当前有很多项目使用跨链技术,但是真正实现跨链的寥寥无几。

(2) 可以根据不同需求实现侧链,满足多种场景

缺点

(1) 跨链速度较慢,需等待 10 个区块确认,这在目前 Bytom 网络上所需时间为 30 分钟左右

(2) 相较于 comos、polkadot 等项目,开发者要开发侧链接入主网成本较大

(3) 只支持资产跨链,不支持跨链智能合约调用

**4、**跨链模型平行对比 Cosmos

可扩展性

bystack 的主测链协同工作模型依靠 Federation,未形成通用协议。其他开发者想要接入其跨链网络难度较大。Cosmos 采用 ibc 协议,可扩展性较强。

代码开发进度

vapor 侧链已经能够实现跨链。Cosmos 目前暂无成熟跨链项目出现,ibc 协议处于最终开发阶段。

跨链模型

vapor 为主侧链模型,Cosmos 为 Hub-Zone 的中继链模型。

5、参考建议

侧链使用 bbft 共识,非 POW 的情况下,无需等待 10 个交易确认,增快跨链速度。

作者:诗人

相关帖子

欢迎来到这里!

我们正在构建一个小众社区,大家在这里相互信任,以平等 • 自由 • 奔放的价值观进行分享交流。最终,希望大家能够找到与自己志同道合的伙伴,共同成长。

注册 关于
请输入回帖内容 ...
bytom
一种多样性比特资产的区块链交互协议 杭州

推荐标签 标签

  • 大数据

    大数据(big data)是指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。

    93 引用 • 113 回帖
  • 深度学习

    深度学习(Deep Learning)是机器学习的分支,是一种试图使用包含复杂结构或由多重非线性变换构成的多个处理层对数据进行高层抽象的算法。

    53 引用 • 40 回帖 • 1 关注
  • Ruby

    Ruby 是一种开源的面向对象程序设计的服务器端脚本语言,在 20 世纪 90 年代中期由日本的松本行弘(まつもとゆきひろ/Yukihiro Matsumoto)设计并开发。在 Ruby 社区,松本也被称为马茨(Matz)。

    7 引用 • 31 回帖 • 253 关注
  • 安全

    安全永远都不是一个小问题。

    203 引用 • 818 回帖 • 1 关注
  • 一些有用的避坑指南。

    69 引用 • 93 回帖
  • 快应用

    快应用 是基于手机硬件平台的新型应用形态;标准是由主流手机厂商组成的快应用联盟联合制定;快应用标准的诞生将在研发接口、能力接入、开发者服务等层面建设标准平台;以平台化的生态模式对个人开发者和企业开发者全品类开放。

    15 引用 • 127 回帖
  • 以太坊

    以太坊(Ethereum)并不是一个机构,而是一款能够在区块链上实现智能合约、开源的底层系统。以太坊是一个平台和一种编程语言 Solidity,使开发人员能够建立和发布下一代去中心化应用。 以太坊可以用来编程、分散、担保和交易任何事物:投票、域名、金融交易所、众筹、公司管理、合同和知识产权等等。

    34 引用 • 367 回帖
  • Caddy

    Caddy 是一款默认自动启用 HTTPS 的 HTTP/2 Web 服务器。

    12 引用 • 54 回帖 • 168 关注
  • 禅道

    禅道是一款国产的开源项目管理软件,她的核心管理思想基于敏捷方法 scrum,内置了产品管理和项目管理,同时又根据国内研发现状补充了测试管理、计划管理、发布管理、文档管理、事务管理等功能,在一个软件中就可以将软件研发中的需求、任务、bug、用例、计划、发布等要素有序的跟踪管理起来,完整地覆盖了项目管理的核心流程。

    6 引用 • 15 回帖 • 40 关注
  • V2EX

    V2EX 是创意工作者们的社区。这里目前汇聚了超过 400,000 名主要来自互联网行业、游戏行业和媒体行业的创意工作者。V2EX 希望能够成为创意工作者们的生活和事业的一部分。

    16 引用 • 236 回帖 • 277 关注
  • Log4j

    Log4j 是 Apache 开源的一款使用广泛的 Java 日志组件。

    20 引用 • 18 回帖 • 33 关注
  • TensorFlow

    TensorFlow 是一个采用数据流图(data flow graphs),用于数值计算的开源软件库。节点(Nodes)在图中表示数学操作,图中的线(edges)则表示在节点间相互联系的多维数据数组,即张量(tensor)。

    20 引用 • 19 回帖 • 1 关注
  • 创业

    你比 99% 的人都优秀么?

    82 引用 • 1395 回帖 • 5 关注
  • 分享

    有什么新发现就分享给大家吧!

    247 引用 • 1794 回帖
  • React

    React 是 Facebook 开源的一个用于构建 UI 的 JavaScript 库。

    192 引用 • 291 回帖 • 382 关注
  • Postman

    Postman 是一款简单好用的 HTTP API 调试工具。

    4 引用 • 3 回帖 • 1 关注
  • 强迫症

    强迫症(OCD)属于焦虑障碍的一种类型,是一组以强迫思维和强迫行为为主要临床表现的神经精神疾病,其特点为有意识的强迫和反强迫并存,一些毫无意义、甚至违背自己意愿的想法或冲动反反复复侵入患者的日常生活。

    15 引用 • 161 回帖
  • Gitea

    Gitea 是一个开源社区驱动的轻量级代码托管解决方案,后端采用 Go 编写,采用 MIT 许可证。

    5 引用 • 16 回帖
  • Firefox

    Mozilla Firefox 中文俗称“火狐”(正式缩写为 Fx 或 fx,非正式缩写为 FF),是一个开源的网页浏览器,使用 Gecko 排版引擎,支持多种操作系统,如 Windows、OSX 及 Linux 等。

    7 引用 • 30 回帖 • 395 关注
  • 国际化

    i18n(其来源是英文单词 internationalization 的首末字符 i 和 n,18 为中间的字符数)是“国际化”的简称。对程序来说,国际化是指在不修改代码的情况下,能根据不同语言及地区显示相应的界面。

    8 引用 • 26 回帖 • 1 关注
  • Lute

    Lute 是一款结构化的 Markdown 引擎,支持 Go 和 JavaScript。

    28 引用 • 197 回帖 • 25 关注
  • Openfire

    Openfire 是开源的、基于可拓展通讯和表示协议 (XMPP)、采用 Java 编程语言开发的实时协作服务器。Openfire 的效率很高,单台服务器可支持上万并发用户。

    6 引用 • 7 回帖 • 99 关注
  • 印象笔记
    3 引用 • 16 回帖 • 1 关注
  • GitBook

    GitBook 使您的团队可以轻松编写和维护高质量的文档。 分享知识,提高团队的工作效率,让用户满意。

    3 引用 • 8 回帖
  • 叶归
    5 引用 • 16 回帖 • 8 关注
  • JVM

    JVM(Java Virtual Machine)Java 虚拟机是一个微型操作系统,有自己的硬件构架体系,还有相应的指令系统。能够识别 Java 独特的 .class 文件(字节码),能够将这些文件中的信息读取出来,使得 Java 程序只需要生成 Java 虚拟机上的字节码后就能在不同操作系统平台上进行运行。

    180 引用 • 120 回帖 • 1 关注
  • 开源中国

    开源中国是目前中国最大的开源技术社区。传播开源的理念,推广开源项目,为 IT 开发者提供了一个发现、使用、并交流开源技术的平台。目前开源中国社区已收录超过两万款开源软件。

    7 引用 • 86 回帖