Bystack 跨链技术源码解读

本贴最后更新于 2000 天前,其中的信息可能已经事过景迁

Bystack 是由比原链团队提出的一主多侧链架构的 BaaS 平台。其将区块链应用分为三层架构:底层账本层,侧链扩展层,业务适配层。底层账本层为 Layer1,即为目前比较成熟的采用 POW 共识的 Bytom 公链。侧链扩展层为 Layer2,为多侧链层,vapor 侧链即处于 Layer2。

图片来自 Bystack 白皮书

Vapor 侧链采用 DPOS 和 BBFT 共识,TPS 可以达到数万。此处就分析一下连接 Bytom 主链和 Vapor 侧链的跨链模型。

主侧链协同工作模型

1、技术细节

POW 当前因为能源浪费而饱受诟病,而且 POW 本身在提高 TPS 的过程中遇到诸多问题,理论上可以把块变大,可以往块里面塞更多的交易。TPS 是每秒出块数*块里面的交易数。但是也存在问题:小节点吃不消存储这么大的容量的内容,会慢慢变成中心化的模式,因为只有大财团和大机构才有财力去组建机房设备,成为能出块的节点。同时传输也存在问题,网络带宽是有限的,块的大小与网络传输的边际是有关的,不可能无限的去增加块的大小,网络边际上的人拿不到新块的信息,也会降低去中心化的程度,这就是为什么 POW 不能在提高可靠性的情况下,提高 TPS 的原因。

而 BFT 虽然去中心化较弱,但其效率和吞吐量高,也不需要大量的共识计算,非常环保节能,很符合 Bystack 侧链高 TPS 的性能需求

(1)跨链模型架构

在 Bystack 的主侧链协同工作模型中,包括有主链、侧链和 Federation。主链为 bytom,采用基于对 AI 计算友好型 PoW(工作量证明)算法,主要负责价值锚定,价值传输和可信存证。侧链为 Vapor,采用 DPOS+BBFT 共识,高 TPS 满足垂直领域业务。主链和侧链之间的资产流通主要依靠 Federation。

(2)节点类型

跨链模型中的节点主要有收集人、验证人和联邦成员。收集人监控联邦地址,收集交易后生成 Claim 交易进行跨链。验证人则是侧链的出块人。联邦成员由侧链的用户投票通过选举产生,负责生成新的联邦合约地址。

(3)跨链交易流程

主链到侧链

主链用户将代币发送至联邦合约地址,收集人监控联邦地址,发现跨链交易后生成 Claim 交易,发送至侧链

侧链到主链

侧链用户发起提现交易,销毁侧链资产。收集人监控侧链至主链交易,向主链地址发送对应数量资产。最后联邦在侧链生成一笔完成提现的操作交易。

2、代码解析

跨链代码主要处于 federation 文件夹下,这里就这部分代码进行一个介绍。

(1)keeper 启动

整个跨链的关键在于同步主链和侧链的区块,并处理区块中的跨链交易。这部份代码主要在 mainchain_keerper.go 和 sidechain_keerper.go 两部分中,分别对应处理主链和侧链的区块。keeper 在 Run 函数中启动。

func (m *mainchainKeeper) Run() {
	ticker := time.NewTicker(time.Duration(m.cfg.SyncSeconds) * time.Second)
	for ; true; <-ticker.C {
		for {
			isUpdate, err := m.syncBlock()
			if err != nil {
				//..
			}
			if !isUpdate {
				break
			}
		}
	}
}

Run 函数中首先生成一个定时的 Ticker,规定每隔 SyncSeconds 秒同步一次区块,处理区块中的交易。

(2)主侧链同步区块

Run 函数会调用 syncBlock 函数同步区块。

func (m *mainchainKeeper) syncBlock() (bool, error) {
	chain := &orm.Chain{Name: m.chainName}
	if err := m.db.Where(chain).First(chain).Error; err != nil {
		return false, errors.Wrap(err, "query chain")
	}

	height, err := m.node.GetBlockCount()
	//..
	if height <= chain.BlockHeight+m.cfg.Confirmations {
		return false, nil
	}

	nextBlockStr, txStatus, err := m.node.GetBlockByHeight(chain.BlockHeight + 1)
	//..
	nextBlock := &types.Block{}
	if err := nextBlock.UnmarshalText([]byte(nextBlockStr)); err != nil {
		return false, errors.New("Unmarshal nextBlock")
	}
	if nextBlock.PreviousBlockHash.String() != chain.BlockHash {
		//...
		return false, ErrInconsistentDB
	}

	if err := m.tryAttachBlock(chain, nextBlock, txStatus); err != nil {
		return false, err
	}

	return true, nil
}

这个函数受限会根据 chainName 从数据库中取出对应的 chain。然后利用 GetBlockCount 函数获得 chain 的高度。然后进行一个伪确定性的检测。

height <= chain.BlockHeight+m.cfg.Confirmations


主要是为了判断链上的资产是否已经不可逆。这里 Confirmations 的值被设为 10。如果不进行这个等待不可逆的过程,很可能主链资产跨链后,主链的最长链改变,导致这笔交易没有在主链被打包,而侧链却增加了相应的资产。在此之后,通过 GetBlockByHeight 函数获得 chain 的下一个区块。

nextBlockStr, txStatus, err := m.node.GetBlockByHeight(chain.BlockHeight + 1)


这里必须满足下个区块的上一个区块哈希等于当前 chain 中的这个头部区块哈希。这也符合区块链的定义。

if nextBlock.PreviousBlockHash.String() != chain.BlockHash {
    //..
}

在此之后,通过调用 tryAttachBlock 函数进一步调用 processBlock 函数处理区块。

(3)区块处理

processBlock 函数会判断区块中交易是否为跨链的 deposit 或者是 withdraw,并分别调用对应的函数去进行处理。

func (m *mainchainKeeper) processBlock(chain *orm.Chain, block *types.Block, txStatus *bc.TransactionStatus) error {
	if err := m.processIssuing(block.Transactions); err != nil {
		return err
	}

	for i, tx := range block.Transactions {
		if m.isDepositTx(tx) {
			if err := m.processDepositTx(chain, block, txStatus, uint64(i), tx); err != nil {
				return err
			}
		}

		if m.isWithdrawalTx(tx) {
			if err := m.processWithdrawalTx(chain, block, uint64(i), tx); err != nil {
				return err
			}
		}
	}

	return m.processChainInfo(chain, block)
}

在这的 processIssuing 函数,它内部会遍历所有交易输入 Input 的资产类型,也就是 AssetID。当这个 AssetID 不存在的时候,则会去在系统中创建一个对应的资产类型。每个 Asset 对应的数据结构如下所示。

m.assetStore.Add(&orm.Asset{
AssetID:           assetID.String(),
IssuanceProgram:   hex.EncodeToString(inp.IssuanceProgram),
VMVersion:         inp.VMVersion,
RawDefinitionByte: hex.EncodeToString(inp.AssetDefinition),
})

在 processBlock 函数中,还会判断区块中每笔交易是否为跨链交易。主要通过 isDepositTx 和 isWithdrawalTx 函数进行判断。

func (m *mainchainKeeper) isDepositTx(tx *types.Tx) bool {
	for _, output := range tx.Outputs {
		if bytes.Equal(output.OutputCommitment.ControlProgram, m.fedProg) {
			return true
		}
	}
	return false
}

func (m *mainchainKeeper) isWithdrawalTx(tx *types.Tx) bool {
	for _, input := range tx.Inputs {
		if bytes.Equal(input.ControlProgram(), m.fedProg) {
			return true
		}
	}
	return false
}

看一下这两个函数,主要还是通过比较交易中的 control program 这个标识和 mainchainKeeper 这个结构体中的 fedProg 进行比较,如果相同则为跨链交易。fedProg 在结构体中为一个字节数组。

type mainchainKeeper struct {
	cfg        *config.Chain
	db         *gorm.DB
	node       *service.Node
	chainName  string
	assetStore *database.AssetStore
	fedProg    []byte
}

(4)跨链交易(主链到侧链的 deposit)处理

这部分主要分为主链到侧链的 deposit 和侧链到主链的 withdraw。先看比较复杂的主链到侧链的 deposit 这部分代码的处理。

func (m *mainchainKeeper) processDepositTx(chain *orm.Chain, block *types.Block, txStatus *bc.TransactionStatus, txIndex uint64, tx *types.Tx) error {
	//..

	rawTx, err := tx.MarshalText()
	if err != nil {
		return err
	}

	ormTx := &orm.CrossTransaction{
	      //..
	}
	if err := m.db.Create(ormTx).Error; err != nil {
		return errors.Wrap(err, fmt.Sprintf("create mainchain DepositTx %s", tx.ID.String()))
	}

	statusFail := txStatus.VerifyStatus[txIndex].StatusFail
	crossChainInputs, err := m.getCrossChainReqs(ormTx.ID, tx, statusFail)
	if err != nil {
		return err
	}

	for _, input := range crossChainInputs {
		if err := m.db.Create(input).Error; err != nil {
			return errors.Wrap(err, fmt.Sprintf("create DepositFromMainchain input: txid(%s), pos(%d)", tx.ID.String(), input.SourcePos))
		}
	}

	return nil
}

这里它创建了一个跨链交易 orm。具体的结构如下。可以看到,这里它的结构体中包括有 source 和 dest 的字段。

ormTx := &orm.CrossTransaction{
		ChainID:              chain.ID,
		SourceBlockHeight:    block.Height,
		SourceBlockTimestamp: block.Timestamp,
		SourceBlockHash:      blockHash.String(),
		SourceTxIndex:        txIndex,
		SourceMuxID:          muxID.String(),
		SourceTxHash:         tx.ID.String(),
		SourceRawTransaction: string(rawTx),
		DestBlockHeight:      sql.NullInt64{Valid: false},
		DestBlockTimestamp:   sql.NullInt64{Valid: false},
		DestBlockHash:        sql.NullString{Valid: false},
		DestTxIndex:          sql.NullInt64{Valid: false},
		DestTxHash:           sql.NullString{Valid: false},
		Status:               common.CrossTxPendingStatus,
	}

创建这笔跨链交易后,它会将交易存入数据库中。

if err := m.db.Create(ormTx).Error; err != nil {
		return errors.Wrap(err, fmt.Sprintf("create mainchain DepositTx %s", tx.ID.String()))
}

在此之后,这里会调用 getCrossChainReqs。这个函数内部较为复杂,主要作用就是遍历交易的输出,返回一个跨链交易的请求数组。具体看下这个函数。

func (m *mainchainKeeper) getCrossChainReqs(crossTransactionID uint64, tx *types.Tx, statusFail bool) ([]*orm.CrossTransactionReq, error) {
	//..
	switch {
	case segwit.IsP2WPKHScript(prog):
		//..
	case segwit.IsP2WSHScript(prog):
		//..
	}

	reqs := []*orm.CrossTransactionReq{}
	for i, rawOutput := range tx.Outputs {
		//..

		req := &orm.CrossTransactionReq{
			//..
		}
		reqs = append(reqs, req)
	}
	return reqs, nil
}

很显然,这个地方的交易类型有 pay to public key hash 和 pay to script hash 这两种。这里会根据不同的交易类型进行一个地址的获取。

switch {
	case segwit.IsP2WPKHScript(prog):
		if pubHash, err := segwit.GetHashFromStandardProg(prog); err == nil {
			fromAddress = wallet.BuildP2PKHAddress(pubHash, &vaporConsensus.MainNetParams)
			toAddress = wallet.BuildP2PKHAddress(pubHash, &vaporConsensus.VaporNetParams)
		}
	case segwit.IsP2WSHScript(prog):
		if scriptHash, err := segwit.GetHashFromStandardProg(prog); err == nil {
			fromAddress = wallet.BuildP2SHAddress(scriptHash, &vaporConsensus.MainNetParams)
			toAddress = wallet.BuildP2SHAddress(scriptHash, &vaporConsensus.VaporNetParams)
		}
	}

在此之后,函数会遍历所有交易的输出,然后创建跨链交易请求,具体的结构如下。

req := &orm.CrossTransactionReq{
   CrossTransactionID: crossTransactionID,
   SourcePos:          uint64(i),
   AssetID:            asset.ID,
   AssetAmount:        rawOutput.OutputCommitment.AssetAmount.Amount,
   Script:             script,
   FromAddress:        fromAddress,
   ToAddress:          toAddress,
   }

创建完所有的跨链交易请求后,返回到 processDepositTx 中一个 crossChainInputs 数组中,并存入 db。

for _, input := range crossChainInputs {
		if err := m.db.Create(input).Error; err != nil {
			return errors.Wrap(err, fmt.Sprintf("create DepositFromMainchain input: txid(%s), pos(%d)", tx.ID.String(), input.SourcePos))
		}
}

到这里,对主链到侧链的 deposit 已经处理完毕。

(5)跨链交易(侧链到主链的 withdraw)交易处理

这部分比较复杂的逻辑主要在 sidechain_keeper.go 中的 processWithdrawalTx 函数中。这部分逻辑和上面主链到侧链的 deposit 逻辑类似。同样是创建了 orm.crossTransaction 结构体,唯一的改变就是交易的 souce 和 dest 相反。这里就不作具体描述了。

3、跨链优缺点

优点

(1) 跨链模型、代码较为完整。当前有很多项目使用跨链技术,但是真正实现跨链的寥寥无几。

(2) 可以根据不同需求实现侧链,满足多种场景

缺点

(1) 跨链速度较慢,需等待 10 个区块确认,这在目前 Bytom 网络上所需时间为 30 分钟左右

(2) 相较于 comos、polkadot 等项目,开发者要开发侧链接入主网成本较大

(3) 只支持资产跨链,不支持跨链智能合约调用

**4、**跨链模型平行对比 Cosmos

可扩展性

bystack 的主测链协同工作模型依靠 Federation,未形成通用协议。其他开发者想要接入其跨链网络难度较大。Cosmos 采用 ibc 协议,可扩展性较强。

代码开发进度

vapor 侧链已经能够实现跨链。Cosmos 目前暂无成熟跨链项目出现,ibc 协议处于最终开发阶段。

跨链模型

vapor 为主侧链模型,Cosmos 为 Hub-Zone 的中继链模型。

5、参考建议

侧链使用 bbft 共识,非 POW 的情况下,无需等待 10 个交易确认,增快跨链速度。

作者:诗人

相关帖子

欢迎来到这里!

我们正在构建一个小众社区,大家在这里相互信任,以平等 • 自由 • 奔放的价值观进行分享交流。最终,希望大家能够找到与自己志同道合的伙伴,共同成长。

注册 关于
请输入回帖内容 ...
bytom
一种多样性比特资产的区块链交互协议 杭州

推荐标签 标签

  • React

    React 是 Facebook 开源的一个用于构建 UI 的 JavaScript 库。

    192 引用 • 291 回帖 • 375 关注
  • Ant-Design

    Ant Design 是服务于企业级产品的设计体系,基于确定和自然的设计价值观上的模块化解决方案,让设计者和开发者专注于更好的用户体验。

    17 引用 • 23 回帖 • 9 关注
  • Telegram

    Telegram 是一个非盈利性、基于云端的即时消息服务。它提供了支持各大操作系统平台的开源的客户端,也提供了很多强大的 APIs 给开发者创建自己的客户端和机器人。

    5 引用 • 35 回帖 • 1 关注
  • WiFiDog

    WiFiDog 是一套开源的无线热点认证管理工具,主要功能包括:位置相关的内容递送;用户认证和授权;集中式网络监控。

    1 引用 • 7 回帖 • 597 关注
  • 程序员

    程序员是从事程序开发、程序维护的专业人员。

    576 引用 • 3533 回帖
  • Hexo

    Hexo 是一款快速、简洁且高效的博客框架,使用 Node.js 编写。

    21 引用 • 140 回帖 • 7 关注
  • etcd

    etcd 是一个分布式、高可用的 key-value 数据存储,专门用于在分布式系统中保存关键数据。

    5 引用 • 26 回帖 • 527 关注
  • 代码片段

    代码片段分为 CSS 与 JS 两种代码,添加在 [设置 - 外观 - 代码片段] 中,这些代码会在思源笔记加载时自动执行,用于改善笔记的样式或功能。

    用户在该标签下分享代码片段时需在帖子标题前添加 [css] [js] 用于区分代码片段类型。

    95 引用 • 642 回帖
  • Unity

    Unity 是由 Unity Technologies 开发的一个让开发者可以轻松创建诸如 2D、3D 多平台的综合型游戏开发工具,是一个全面整合的专业游戏引擎。

    25 引用 • 7 回帖 • 159 关注
  • Netty

    Netty 是一个基于 NIO 的客户端-服务器编程框架,使用 Netty 可以让你快速、简单地开发出一个可维护、高性能的网络应用,例如实现了某种协议的客户、服务端应用。

    49 引用 • 33 回帖 • 23 关注
  • 开源

    Open Source, Open Mind, Open Sight, Open Future!

    408 引用 • 3575 回帖
  • 百度

    百度(Nasdaq:BIDU)是全球最大的中文搜索引擎、最大的中文网站。2000 年 1 月由李彦宏创立于北京中关村,致力于向人们提供“简单,可依赖”的信息获取方式。“百度”二字源于中国宋朝词人辛弃疾的《青玉案·元夕》词句“众里寻他千百度”,象征着百度对中文信息检索技术的执著追求。

    63 引用 • 785 回帖 • 161 关注
  • 人工智能

    人工智能(Artificial Intelligence)是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门技术科学。

    138 引用 • 203 回帖 • 1 关注
  • 反馈

    Communication channel for makers and users.

    123 引用 • 915 回帖 • 252 关注
  • Rust

    Rust 是一门赋予每个人构建可靠且高效软件能力的语言。Rust 由 Mozilla 开发,最早发布于 2014 年 9 月。

    58 引用 • 22 回帖
  • B3log

    B3log 是一个开源组织,名字来源于“Bulletin Board Blog”缩写,目标是将独立博客与论坛结合,形成一种新的网络社区体验,详细请看 B3log 构思。目前 B3log 已经开源了多款产品:SymSoloVditor思源笔记

    1063 引用 • 3454 回帖 • 187 关注
  • WebSocket

    WebSocket 是 HTML5 中定义的一种新协议,它实现了浏览器与服务器之间的全双工通信(full-duplex)。

    48 引用 • 206 回帖 • 320 关注
  • Sillot

    Insights(注意当前设置 master 为默认分支)

    汐洛彖夲肜矩阵(Sillot T☳Converbenk Matrix),致力于服务智慧新彖乄,具有彖乄驱动、极致优雅、开发者友好的特点。其中汐洛绞架(Sillot-Gibbet)基于自思源笔记(siyuan-note),前身是思源笔记汐洛版(更早是思源笔记汐洛分支),是智慧新录乄终端(多端融合,移动端优先)。

    主仓库地址:Hi-Windom/Sillot

    文档地址:sillot.db.sc.cn

    注意事项:

    1. ⚠️ 汐洛仍在早期开发阶段,尚不稳定
    2. ⚠️ 汐洛并非面向普通用户设计,使用前请了解风险
    3. ⚠️ 汐洛绞架基于思源笔记,开发者尽最大努力与思源笔记保持兼容,但无法实现 100% 兼容
    29 引用 • 25 回帖 • 93 关注
  • 小薇

    小薇是一个用 Java 写的 QQ 聊天机器人 Web 服务,可以用于社群互动。

    由于 Smart QQ 从 2019 年 1 月 1 日起停止服务,所以该项目也已经停止维护了!

    34 引用 • 467 回帖 • 753 关注
  • frp

    frp 是一个可用于内网穿透的高性能的反向代理应用,支持 TCP、UDP、 HTTP 和 HTTPS 协议。

    20 引用 • 7 回帖 • 2 关注
  • JWT

    JWT(JSON Web Token)是一种用于双方之间传递信息的简洁的、安全的表述性声明规范。JWT 作为一个开放的标准(RFC 7519),定义了一种简洁的,自包含的方法用于通信双方之间以 JSON 的形式安全的传递信息。

    20 引用 • 15 回帖 • 4 关注
  • HHKB

    HHKB 是富士通的 Happy Hacking 系列电容键盘。电容键盘即无接点静电电容式键盘(Capacitive Keyboard)。

    5 引用 • 74 回帖 • 485 关注
  • 钉钉

    钉钉,专为中国企业打造的免费沟通协同多端平台, 阿里巴巴出品。

    15 引用 • 67 回帖 • 326 关注
  • CodeMirror
    1 引用 • 2 回帖 • 132 关注
  • Docker

    Docker 是一个开源的应用容器引擎,让开发者可以打包他们的应用以及依赖包到一个可移植的容器中,然后发布到任何流行的操作系统上。容器完全使用沙箱机制,几乎没有性能开销,可以很容易地在机器和数据中心中运行。

    493 引用 • 928 回帖
  • Wide

    Wide 是一款基于 Web 的 Go 语言 IDE。通过浏览器就可以进行 Go 开发,并有代码自动完成、查看表达式、编译反馈、Lint、实时结果输出等功能。

    欢迎访问我们运维的实例: https://wide.b3log.org

    30 引用 • 218 回帖 • 634 关注
  • 笔记

    好记性不如烂笔头。

    308 引用 • 794 回帖