在不同的 MySQL 引擎中,count(*) 有不同的实现方式。
- MyISAM 引擎把一个表的总行数存在了磁盘上,因此执行 count(*) 的时候会直接返回这个数,效率很高;
- 而 InnoDB 引擎,它执行 count(*) 的时候,需要把数据一行一行地从引擎里面读出来,然后累积计数。
这里需要注意的是,我们讨论的是没有过滤条件的 count(*),如果加了 where 条件的话,MyISAM 表也是不能返回得这么快的。
对于 count(主键 id)来说 ,InnoDB 引擎会遍历整张表,把每一行的 id 值都取出来,返回给 server 层。server 层拿到 id 后,判断是不可能为空的,就按行累加。
对于 count(1)来说 ,InnoDB 引擎遍历整张表,但不取值。server 层对于返回的每一行,放一个数字“1”进去,判断是不可能为空的,按行累加。
单看这两个用法的差别的话,能对比出来,count(1)执行得要比 count(主键 id)快。因为从引擎返回 id 会涉及到解析数据行,以及拷贝字段值的操作。
对于 count(字段) 来说
- 如果这个“字段”是定义为 not null 的话,一行行地从记录里面读出这个字段,判断不能为 null,按行累加;
- 如果这个“字段”定义允许为 null,那么执行的时候,判断到有可能是 null,还要把值取出来再判断一下,不是 null 才累加。也就是前面的第一条原则,server 层要什么字段,InnoDB 就返回什么字段。
但是 count(*)是例外 ,并不会把全部字段取出来,而是专门做了优化,不取值。count(*)肯定不是 null,按行累加。
按照效率排序的话,count(字段)<count(主键 id)<count(1)≈count(*)
同时,把计数放在 Redis 里面,不能够保证计数和 MySQL 表里的数据精确一致的原因,是这两个不同的存储构成的系统,不支持分布式事务,无法拿到精确一致的视图。而把计数值也放在 MySQL 中,就解决了一致性视图的问题。(缓存一致性问题实质是分布式事务问题)
欢迎来到这里!
我们正在构建一个小众社区,大家在这里相互信任,以平等 • 自由 • 奔放的价值观进行分享交流。最终,希望大家能够找到与自己志同道合的伙伴,共同成长。
注册 关于