Andrej Karpathy | 详解神经网络和反向传播(基于 micrograd)

本贴最后更新于 800 天前,其中的信息可能已经天翻地覆

只要你懂 Python,大概记得高中学过的求导知识,看完这个视频你还不理解反向传播和神经网络核心要点的话,那我就吃鞋:D

Andrej Karpathy,前特斯拉 AI 高级总监、曾设计并担任斯坦福深度学习课程 CS231n 讲师、OpenAI 创始成员和研究科学家。在 7 月离职特斯拉后,Andrej 在家录制了一个详解反向传播的课程,自信表示“这是 8 年来领域内对神经网络和反向传播的最佳讲解”,并在推特打赌“看不懂就吃鞋”。

image.png

虽然很想看 Andrej 直播吃鞋,但实话实说,作为小白的我,好像真的看懂了。

课程视频

【中英字幕】Andrej Karpathy | 详解神经网络和反向传播(基于 micrograd)

字幕由矩池云翻译制作

课程介绍

课程时长 2 小时 25 分钟,基于 micrograd 详细介绍并演示了神经网络的搭建和反向传播的过程。Micrograd 是 Andrej 于 2020 年编写并开源的微型 autograd(自动梯度)引擎。其中用 100 行代码实现了针对动态构建的 DAG 的反向传播算法,并用 50 行代码实现了类 PyTorch API 的库。目前,micrograd 项目的 GitHub Star 量已达 2.6k。

image.png

基于 micrograd,Andrej 介绍了只有一个输入的简单函数的求导(y = 3x² - 4x + 5 这个函数中,求 y 对 x 的导数)和具有多个输入的简单函数的求导(已知 3 个输入 a、b、c,并且 d = a * b + c,求 d 分别对 a、b、c 的导数)、启动 micrograd 的核心 Value 对象及其可视化的方法,并举了两个手动反向传播的例子。接下来 Andrej 系统地介绍了:

为单个运算实现反向传播;
为整个表达式图实现反向函数;
修复反向传播中一个节点多次使用出现的 bug;
使用更多运算替换 tanh 激活函数;
在 PyTorch 中实现上述运算并与 micrograd 进行比较;
用 micrograd 构建一个神经网络库(MLP);
创建一个微型数据集,编写损失函数;
收集神经网络的所有参数;
手动进行梯度下降优化,训练网络。
最后 Andrej 总结了反向传播与现代神经网络的关系。此外,Andrej 还探究了 PyTorch 中 tanh 激活函数的反向传播机制

image.png

课程主讲

Andrej Karpathy 出生于斯洛伐克,15 岁时随家人移民加拿大。在一次采访中,Andrej 表示,“在斯洛伐克的时候并不开心,一直想要离开,当父母表示要移民加拿大的时候,我立马同意了,但家里其他人很犹豫,我就去说服每个人”[3]。

来到加拿大的 Andrej 还不会说英语,但数学成绩非常优秀,完成高中学业后进入多伦多大学计算机科学与物理系并辅修数学,在那里他遇到了 Geoffrey Hinton 教授,也是在 Geoff 的课上,他接触到了深度学习算法。

2009 - 2011 年,Andrej 硕士就读于加拿大不列颠哥伦比亚大学,其导师为计算机科学系教授 Michiel van de Panne,主要研究物理模拟中用于敏捷机器人的机器学习。

CS231n 初露锋芒

2011 年,Andrej 进入斯坦福大学攻读博士学位,师从李飞飞主攻深度学习和图像识别。在斯坦福,他和导师李飞飞一起研究图像识别与深度学习算法,主导设计了斯坦福第一门深度学习课程《CS231n:用于视觉识别的卷积神经网络》,并和李飞飞共同担任主讲人。很快,这门课成为斯坦福的网红课程,注册学生从开课时的 150 人增加到两年后的 750 人。

在读博期间,Andrej 发表的多篇论文都是 CV 领域的高引文章,还在 Google、DeepMind 两家公司实习。

他会是全世界最顶级的 AI 领袖

2016 年 Andrej 成为 OpenAI 创始成员,OpenAI 是由马斯克等人创立的非盈利人工智能研究组织,也是在这里,他的天赋被马斯克看中,马斯克不惜得罪 OpenAI 其他成员把 Andrej 从 OpenAI 带到了特斯拉。五年里,Andrej 一手促成了 Autopilot 的开发。随着特斯拉从最开始的自动驾驶慢慢扩展到更广泛的人工智能领域,他也被提为特斯拉的 AI 高级总监,直接向马斯克汇报工作。

据说马斯克曾说过,很多人把 Andrej 当做优秀的 AI 视觉科学家,但我知道,他会是全世界最顶级的 AI 领袖。

而这位 AI 领袖现在才 36 岁...

  • 深度学习

    深度学习(Deep Learning)是机器学习的分支,是一种试图使用包含复杂结构或由多重非线性变换构成的多个处理层对数据进行高层抽象的算法。

    53 引用 • 40 回帖

相关帖子

欢迎来到这里!

我们正在构建一个小众社区,大家在这里相互信任,以平等 • 自由 • 奔放的价值观进行分享交流。最终,希望大家能够找到与自己志同道合的伙伴,共同成长。

注册 关于
请输入回帖内容 ...
matpool
矩池云国内领先的GPU云共享平台,提供高性能的GPU租赁服务,助力人工智能、影视渲染行业。