socket 发送缓冲区控制

本贴最后更新于 697 天前,其中的信息可能已经时移世易

假设应用程序需要发送 40kB 数据,但是 TCP 发送缓冲区只有 25kB 剩余空间,那么剩下的 15kB 数据怎么办?
如果等待 OS 缓冲区可用,会阻塞当前线程,因为不知道对方什么时候收到并读取数据.

为了避免这种阻塞,可以引入应用层发送缓冲区,将要发送的数据暂时缓存起来。当 TCP 连接的发送缓冲区有足够的空间时,应用层发送缓冲区中的数据就可以被立即发送,从而避免阻塞


TCP 连接发送数据时,内核维护了一个发送缓冲区,用于存储待发送的数据,而发送缓冲区的大小是有限的

当调用 send()发送数据时,数据从用户态缓冲区复制到内核缓冲区,然后通过网络发送出去
如果发送缓冲区已满,则 send()会被阻塞,直到发送缓冲区中有空间可用

在这里我们可以使用快速用户空间套接字1,减少内核复制开销

当发送大量数据时,如果一次性全部发送到内核缓冲区中,则可能会因为缓冲区空间不足而导致阻塞,阻塞时间可能很长。

为提高数据传输的效率和响应速度,将数据分批发送,每次发送一部分数据,并通过应用层发送缓冲区进行缓存
等待发送缓冲区有空间时再发送下一批数据。使得发送操作不会因为缓冲区不足而阻塞,从而提高传输效率和响应速度

相当于设置消息帧协议21


注意 socket 发送缓冲区可以不装满发送, 而且可以由程序员手动设置缓冲区大小

解决办法

  1. 使用非阻塞 IO 操作

    就是将 socket 设置成非阻塞模式, 发送数据时不会阻塞线程

  2. 使用多线程

    也就说类似于 sylar 项目中那样, 通过 hook 把 socket 修改为异步的

  3. 使用快速用户空间套接字1

    减少内核复制开销

  4. 设置缓冲区大小

    一般不建议把缓冲区设置的太大, 在高性能场景下, 设置太大会导致利用率低, 没办法有效利用
    而且 socket 也不止一个, 每个都设置的较大就会导致缓冲区非常大而且利用率非常低


  1. 快速用户空间套接字

    Linux 内核提供的高性能 IPC1机制, 目的是降低状态切换1的开销 ^(上下文切换和内存复制开销)^

    传统 IPC1涉及多次上下文切换和内存复制导致性能损失, FUS 是零拷贝,无系统调用,无状态切换1

    FUS 完全可以取代 普通 socket, 但是在一些对性能没那么高要求的地方可以使用普通的, 因为相对简单


    基于内存映射和事件驱动机制的

    首先, 两个进程都创建 FUS 套接字,并使用内存映射将其映射到共享的内存区域中。
    然后,进程可以直接在内存区域中读写数据,而不需要进行状态切换1
    当数据准备好时,通过事件驱动机制通知另一个进程进行读取

    #define FUS_SOCKET_SIZE (1 << 12) #define FUS_PAYLOAD_SIZE (1 << 12) struct fus_socket { int evtfd; uint32_t head, tail, wrap_counter; char pad1[4], pad2[4], payload[FUS_PAYLOAD_SIZE]; }; int main() { void* map = mmap(nullptr, FUS_SOCKET_SIZE, PROT_READ | PROT_WRITE, MAP_SHARED | MAP_ANONYMOUS, -1, 0); if (map == MAP_FAILED) { std::cerr << "Failed to mmap: " << strerror(errno) << std::endl; return 1; } fus_socket* sock = reinterpret_cast<fus_socket*>(map); sock->evtfd = eventfd(0, EFD_NONBLOCK); if (sock->evtfd == -1) { std::cerr << "Failed to create eventfd: " << strerror(errno) << std::endl; return 1; } sock->head = sock->tail = sock->wrap_counter = 0; // Send some data const char* message = "Hello, FUS!"; uint32_t len = strlen(message); memcpy(sock->payload + sock->tail, message, len); sock->tail += len; // Notify the receiver uint64_t event_val = 1; int res = write(sock->evtfd, &event_val, sizeof(event_val)); if (res == -1) { std::cerr << "Failed to write to eventfd: " << strerror(errno) << std::endl; return 1; } // Wait for the receiver to read the data int futex_res = syscall(SYS_futex, &sock->tail, FUTEX_WAIT, sock->tail, nullptr, nullptr, 0); if (futex_res == -1) { std::cerr << "Failed to wait on futex: " << strerror(errno) << std::endl; return 1; } std::cout << "Data received by receiver." << std::endl; // Cleanup close(sock->evtfd); munmap(map, FUS_SOCKET_SIZE); return 0; }
  2. 进程通信

    • 共享存储 ^(通信进程之间存在一块可直接访问的共享空间)^

      需要同步互斥工具

      • 低级通信方式 ^(基于数据结构的共享)^ 只能存放固定的数据结构, 速度慢, 限制多
      • 高级通信方式 ^(基于存储区的共享)^ 在内存划分共享存储区, 不限制数据结构和存放位置, 速度快, 限制少
    • 消息传递 ^(进程间直接交换数据, 数据以 格式化的消息 为单位交换)^

      通过发送/接受原语进行数据交换

      格式(消息头, 消息体)

      当前最广泛的进程间通信方式, 网络的主要通信工具(报文1)

      • 直接通信方式 ^(直接将消息交给进程(将消息放置接收进程的消息队列))^
      • 间接通信方式 ^(消息发送给中间实体(信箱), 网络中常用)^
    • 管道通信 ^(一个特殊的共享文件)^

      在内存中开辟一个固定大小的缓冲区(与内存页1大小相同)

      采用半双工通信1, 进程访问管道需要互斥访问

      没写满不允许读, 没读完不允许写

      只能读一次, 读出后管道抛弃数据


    IPC 问题1

    实际通信方式

    • 管道 ^(半双工的通信方式,分为匿名管道和命名管道)^

    • 信号 ^(异步的通信方式,用于通知接收进程发生了某种事件)^

    • 共享内存 ^(进程间数据共享的方式,允许多个进程访问同一块内存区域)^

    • 消息队列 ^(消息传递机制,消息队列存放在内核中,允许一个进程向另一个进程发送消息)^

    • 信号量 ^(进程间同步的机制,用于协调多个进程对共享资源的访问)^

    • 套接字 ^(进程间网络通信的机制,可以实现不同主机上的进程间通信)^

    • 报文交换

    • 优点

      • 无须建立连接
      • 动态分配路线
      • 提高线路可靠性
      • 提供多目标服务
    • 缺点

      • 产生了转发时延
      • 存储管理困难
    • 页式虚拟存储器 :: 基本分页存储管理1

    • 页表 :: 是一种存储结构

      • 有效位被称为装入位

      • 页表项 = (有效位 ^(是否被使用, 是否在主存中)^, 脏位 ^(是否被修改过, 是否需要使用回写策略)^, 引用位 ^(也称访问位, 用于记录一段时间内的访问次数或者其他, 供置换算法参考)^, 物理页或磁盘地址)

        • 在没有使用虚拟技术时, 那么就没有有效位这些辅助信息, 因为作业全装入内存[^7]
      • 优点 :: 长度固定, 页表简单, 调入方便

      • 缺点 :: 会有部分空间浪费, 页逻辑上不独立, 处理, 保护和共享不方便

      • 页表是地址变化机构的一部分(数据), 另一部分是判断(判断逻辑地址越界和是否在页表)

    • 内存页面 > 内存块(Cache 块)

    • 快表 :: 将页表放入高速缓冲存储器, 遵循局部性原理1

      • 放入主存的页表称为慢表
      • 通常采用全相联或组相联方式, 是相联存储器, 可以按内容寻址
      • 命中率一般在 90% 以上
      • 快表加速的是将逻辑地址转化成物理地址的速度, 类似与 ARP1
    • 快表 :: 将页表放入高速缓冲存储器, 遵循((20220825171041-2qo8g4p "局部性原理"))

    • 放入主存的页表称为慢表

    • 通常采用全相联或组相联方式, 是相联存储器, 可以按内容寻址

    • 命中率一般在 90% 以上

    • 快表加速的是将逻辑地址转化成物理地址的速度, 类似与((20220819165406-gosrf2n "ARP"))

    • 基本分页存储管理 ^(将主存分为大小相等相对较小的块作为分配的基本单位)^

      页 ^(内存分配单元(存储单元是字/字节))^

      页框 ^(进程的最大页数)^

      注意页框号和页号的区别 ^(页框号是作业在内存的实际物理地址,页号一般指逻辑地址 选择题往往考察给你个虚地址,先让你判断是否在内存,然后置换算法, 等找到页框号后加页内偏移量组成实际物理地址)^

      页表 :: 是一种存储结构1, 数组结构导致页号可以用地址隐含表示不需要存储

      • 注意区分 Cache 映射方式1与页表 :: 是一种存储结构1的关系

        页表负责将逻辑地址转换为主存地址, 然后在拿主存地址再进行一次页表查询是否再 Cache 中

      • 地址变换机构1的任务是逻辑地址转内存物理地址

      • 多级页表

        各级页表不能超过一个页面的最大页表项数目(页面大小/页表项大小)

        n = log(虚地址位数 - 页内偏移量)/log(页面大小/页表项大小)

        n 级页表访存次数 = n + 1 次, 才能获得物理地址

    • 页表 :: 是一种存储结构

    • 有效位被称为装入位

    • 页表项 = (有效位 ^(是否被使用, 是否在主存中)^, 脏位 ^(是否被修改过, 是否需要使用回写策略)^, 引用位 ^(也称访问位, 用于记录一段时间内的访问次数或者其他, 供置换算法参考)^, 物理页或磁盘地址)

      • 在没有使用虚拟技术时, 那么就没有有效位这些辅助信息, 因为作业全装入内存[^7]
    • 优点 :: 长度固定, 页表简单, 调入方便

    • 缺点 :: 会有部分空间浪费, 页逻辑上不独立, 处理, 保护和共享不方便

    • 页表是地址变化机构的一部分(数据), 另一部分是判断(判断逻辑地址越界和是否在页表)

    • 映射方式 :: 直接映射, 全相联映射, 组相联映射1

    • 直接映射

      • 主存块只能放在 Cache 的唯一位置, 若已有内容则直接替换, 哪怕有空闲的 Cache 块
      • 冲突概率最高, 空间利用率最低
      • 地址结构 :: 标记 - 行号 - 块内地址
      • 标记被多个地址块共享, 相当于标记被复用了, 在主存的位置用行号进行区分
        相对于全相联映射1
      • Cache 行号 = 主存块号 mod (Cache 行数)
    • 全相联映射

      • 主存块可以放在 Cache 的任意位置
      • 冲突概率低, 空间利用率最高, 命中率高, 标记比较速度慢, 成本高
      • 地址结构 :: 标记 - 块内地址
    • 组相联映射

      • 直接映射1和全相联映射的折中, 设置组号, 地址块先判断组号, 如果组号对应的 Cache 内有数据, 在通过遍历直接检索是否有相应的标志, 地址块可以放在 Cache 组里的任意位置
      • 组的大小适当时, 成本直逼直接映射, 性能接近全相联映射
      • 地址结构 :: 标志 - 组号 - 块内地址
      • 当一组由两个时称为 二路组相联, 以此类推, n 路组相联
    • 除此之外 Cache 的标记项内还有一个 有效位, 用来判断当前标志是否有效
      原因是最初 Cache 默认标签都指向 0, 但是并不是真的是 0 地址块的副本, 只是初始化
      所以需要一个有效位来判断是否真的有效

    • 错误理解1

      标记, 组号, 行号, 脏位, 有效位 是存放在页表 :: 是一种存储结构1中的, 错误理解1

      Cache 不仅仅只是用来存放数据的, 同时还将存储相应的地址映射表
      只是我们常认为的容量是指数据部分
      只要看到求 Cache 总容量有多少位时就是求数据位 + 地址映射表

    • 计算 Cache 命中率时 要留意读写指令!
      向 a = a + 1; 这种就有读指令和写指令, 如果缺是 a, 那么命中率是 50%

    • 从 Cache 中取数据首先获得物理地址(也就是在主存的真实物理地址)
      将地址根据映射方式, 拆分出组号和标签等信息, 通过地址映射表比对
      从而找到 Cache 对应的数据

    • 组相联映射

    • 直接映射1和全相联映射的折中, 设置组号, 地址块先判断组号, 如果组号对应的 Cache 内有数据, 在通过遍历直接检索是否有相应的标志, 地址块可以放在 Cache 组里的任意位置

    • 组的大小适当时, 成本直逼直接映射, 性能接近全相联映射

    • 地址结构 :: 标志 - 组号 - 块内地址

    • 当一组由两个时称为 二路组相联, 以此类推, n 路组相联

    • 直接映射

    • 主存块只能放在 Cache 的唯一位置, 若已有内容则直接替换, 哪怕有空闲的 Cache 块

    • 冲突概率最高, 空间利用率最低

    • 地址结构 :: 标记 - 行号 - 块内地址

    • 标记被多个地址块共享, 相当于标记被复用了, 在主存的位置用行号进行区分
      相对于全相联映射1

    • Cache 行号 = 主存块号 mod (Cache 行数)

    • 全相联映射

    • 主存块可以放在 Cache 的任意位置

    • 冲突概率低, 空间利用率最高, 命中率高, 标记比较速度慢, 成本高

    • 地址结构 :: 标记 - 块内地址

    • 这些映射方式需要用到的标记, 组号, 行号, 脏位等有专门的 memory 来存储~~~~换句话来说这些标记的额外信息又是如何工作的不在映射方式的讨论范围内(现代计 CPU)

    标记, 组号, 行号, 脏位, 有效位 是存放在 Cache 块内的, 块中的数据只有部分是来自内存

    • Cache 内存放的是纯粹的内存数据
    • 页表是地址变化机构的一部分(数据), 另一部分是判断(判断逻辑地址越界和是否在页表)
    • 局部性原理: 时间局部性, 空间局部性

    • 时间局部性 :: 现在使用的, 在未来大概率会被使用

    • 空间局部性 :: 未来使用的, 在空间上靠近现在使用的

    • 在程序执行过程中, 程序对主存的访问是不均匀的

    • 地址解析协议

    • ARP 表 = (IP 地址, MAC 地址)

    • 工作在网络层

    • 单向通信(单工) 只有一个方向的通信
      半双工通信(半双工) 双方都可以发送或接收数据
      全双工通信(全双工) 通信双方可以同时发送和接收数据
  3. IPC 问题

    由于进程的独立性和封闭性,需要特殊的技术和机制来完成不同进程间的通信和协作

    1. 根据需求选择适合的进程间通信

    2. 数据格式:通信的数据格式需要保证统一,否则无法正确解析数据

      常用的数据格式包括二进制、XML、JSON 等

    3. 安全性:数据需要保证安全,防止被非法获取或篡改

      需要考虑数据加密、身份验证等安全措施。

    4. 性能:不同的 IPC 方式有不同的性能特点,需要根据需求选择
      例如,共享内存可以实现高效的数据共享,但需要注意同步和互斥问题。

  4. 内核态和用户态的切换

    • 内核 -> 用户 :: 执行特权指令(修改 PSW), 让出 CPU 使用权
    • 用户 -> 内核 :: 由中断1引发, 硬件自动完成转换状态过程, 系统强行夺取使用权
    • 中断 ^(来自 CPU 外部, 与执行指令的无关事件引起)^

    • 可屏蔽中断 ^(CPU 可以通过中断控制器的设置, 被屏蔽的信号将不被送到 CPU)^

    • 不可屏蔽中断 ^(通过专门的中断请求线发送中断信号)^

  5. 实际通信方式

    • 管道 ^(半双工的通信方式,分为匿名管道和命名管道)^

    • 信号 ^(异步的通信方式,用于通知接收进程发生了某种事件)^

    • 共享内存 ^(进程间数据共享的方式,允许多个进程访问同一块内存区域)^

    • 消息队列 ^(消息传递机制,消息队列存放在内核中,允许一个进程向另一个进程发送消息)^

    • 信号量 ^(进程间同步的机制,用于协调多个进程对共享资源的访问)^

    • 套接字 ^(进程间网络通信的机制,可以实现不同主机上的进程间通信)^

  6. 消息帧协议

    是一种通信协议,用于在通信系统中传输数据. 在协议中数据被分割成固定大小的帧
    每个帧都包含了数据和控制信息,以确保数据的可靠传输和正确性通常

    消息帧协议包含了帧的格式、帧类型、帧长度、校验和等内容

    消息帧协议通常用于工业自动化、电力、交通、航空航天等领域的通信系统中,以实现数据的可靠传输和控制

    在实际应用中,具有数据传输可靠、数据量小、速度快、延迟低等优点,适用于实时性要求高的应用场景。

    但同时也存在一些缺点,例如带宽利用率低、灵活性不高等

    因此,在设计和选择消息帧协议时,需要综合考虑应用场景、性能要求、可靠性要求和实际情况等因素


    要注意, 消息帧协议是来自应用层的, 要注意区分链路层的帧

    为什么还要在应用层1分帧?

    链路层1设置的帧大小由底层协议 ^(以太网,wifi 等)^ 所规定, 在开发层面上基本上是固定的, 没有办法根据具体业务来进行划分

    在应用层上再次进行分帧就可以将数据分成适当大小 ^(一般是分成更小)^ 来保证实时性和响应速度


    现在主流的 http/1.x 是没有分帧能力的, 到 2 以上才有.

  7. 应用层

  8. 数据链路层

    链路层功能

    • 为网络层提供服务 :: 无确认的无连接服务, 有确认的无连接服务, 有确认的面向连接服务

    • 链路服务

      • 帧定界, 帧同步, 透明传输

        • 最大传输单元
      • 流量控制

      • 差错控制

        • 自动重传请求
        • 前向纠错

    组帧

    • 字符计数法 :: 在帧头部使用一个计数字段来表明帧内字符数

    • 字符填充的首位定界符法 :: 特殊字符前用转移字符填充

    • 零比特填充的首尾标志法 :: 连续五个 1 后 一定有个 0

    • 违规编码法

      • 在物理层进行比特编码时, 通常采用违规编码法
      • 不采用任何填充技术, 只适用于采用冗余编码的特殊编码环境
      • 局域网 IEEE802 标准采用这种方法

    差错控制

    • 检测编码

      • 奇偶校验码
      • 循环冗余码
    • 纠错编码

    流量控制与可靠传输机制

    • 停止-等待协议 :: 发送一帧后要接收到确认帧才能继续

    • 滑动窗口流量控制

      • 发送窗口 :: 发送方维持一组连续的允许发送的帧序号

      • 接收窗口 :: 接收方维持一组连续的接收帧序号


      • 单帧滑动窗口

      • 多帧滑动窗口

        • 后退 N 帧协议

          • 发送窗口尺寸 [1, 2^n^ - 1]
        • 选择重传协议

          • 发送窗口 = 接收窗口 = 2^n-1^
        • 信道利用率 =

          • T 发送周期
          • C 数据发送速率
          • L 数据量
        • 信道吞吐率 = L / T

    • 可靠流量机制 :: 实际有线网络链路层很少采用可靠传输

    介质访问控制

    • 信道划分介质访问控制

      • 频分多路复用

      • 时分多路复用

      • 波分多路复用

      • 码分多路复用

        • 主要用于无线通信系统
    • 随机访问介质访问控制

      • ALOHA 协议

        • 纯 ALOHA 协议
        • 时隙 ALOHA 协议
      • CSMA 协议

        • 1-坚持 CSMA
        • 非坚持 CSMA
        • p-坚持 CSMA
      • CSMA/CD 协议

      • CSMA/CA 协议

    • 轮询访问介质访问控制

      • 令牌传递协议
    • 种类

      • 静态 :: 信道划分介质访问控制1
      • 动态 :: 随机访问介质访问控制1, 轮询访问介质访问控制1

    局域网

    • 局域网的特点由三个要素决定 :: 拓扑结构, 传输介质, 介质访问控制方式

    • 拓扑结构 :: 总线形网络, 星形网络, 环形网络, 网状网络1

    • 局域网中常使用双绞线1


    • 逻辑结构 物理结构
      以太网 总线形 星形或拓展星形
      令牌环 环形 星形
      FDDI 环形 双环
    • 以太网 :: 目前使用范围最广的局域网

    • IEEE 802.3

      • 描述物理层和数据链路层 MAC 子层的实现方法
    • 以太网简化通信措施

      • 采用无连接工作方式, 提供不可靠服务, 尽最大努力交付数据
      • 使用曼彻斯特的信号
    • 参数 10BASE5 10BASE2 10BASE-T 10BASE-FL
      传输媒体 基带同轴电缆(粗缆) 基带同轴电缆(细缆) 非屏蔽双绞线 光线对(850nm)
      编码 曼彻斯特编码 曼彻斯特编码 曼彻斯特编码 曼彻斯特编码
      拓扑结构 总线形 总线形 星形 点对点
      最大段长 500m 185m 100m 2000m
      最多结点数目 100 30 2 2
    • MAC 帧

      • MAC 地址 :: 6 字节
      • 前导码 :: 8B
      • 以太网 MAC 帧的数据大小 64 ~ 1518 B
      • 最小长度为 64B, 由 CSMA/CD 的算法
    • 高速以太网 :: 速率超过 100Mb/s

      • 100BASE-T 以太网

        • 9.6us 变成 0.96us
      • 吉比特以太网

      • 10 吉比特以太网

        • 只能工作在全双工方式
    • 无线局域网

      • 由固定基础设施无线局域网
      • 无固定基础设施移动自组织网络
    • 802.11 局域网 MAC 帧1

      • 类型 :: 数据帧, 控制帧, 管理帧

      • 数据帧

        • MAC 首部 30 字节
        • 帧主体 不超过 2312 字节
        • 帧检验序列 FCS 4 字节
        • 去往 AP 来自 AP 地址 1 地址 2 地址 3
          0 1 接收地址 = 目的地址 发送地址 = AP 地址 源地址
          1 0 接收地址 = AP 地址 发送地址 = 源地址 目的地址
    • VLAN

      • 可以隔离广播域和冲突域
      • 使用的是交换技术

    广域网

    • 因特网的核心部分

    • 广域网 != 互联网, 互联网可以连接不同类型的网络

    • 广域网由节点交换机以及连接这些交换机的链路组成(结点交换机 != 路由器)

      • 结点交换机 = 三层交换机
    • 区别 广域网 局域网
      覆盖范围 大, 通常跨区域 小, 通常在一个区域内
      连接方式 点对点连接
      为了提高网络可靠性,结点常连接多个结点
      普遍采用多点接入技术
      参考模型1 三层 两层
      联系与相似 1. 都是互联网的重要组成构件, 二者平等
      2. 连接到两者上的主句在网内通信时, 只需要器物理地址
      -
      着重点 强调共享资源 强调数据传输
    • PPP 协议

      • 串行线路面向字节的通信协议

      • 目的 :: 用来通过拨号或专线方式建立点对点连接发送数据

      • 组成部分

        • 链路控制协议
        • 网络控制协议
        • 一个将 IP 数据报封装到串行链路的方法
      • 点对点连接, 不采用 CSMA/CD1,没有最短最短帧1

      • 只提供检错, 不提供纠错, 是不可靠传输协议

      • 只支持全双工链路

    链路层设备

    • 局域网交换机

      • 本质是多端口网桥

      • 能划分冲突域

      • 总容量 = N × 10Mb/s (N 是端口数, 10 是例子)

      • 一般采用全双工

      • 模式 :: 直通式交换机, 存储转发式交换机

      • MAC 表 :: (MAC 地址 - 接口)

        • 具有自学习功能
    • 网桥

    • 信道划分介质访问控制

    • 频分多路复用

    • 时分多路复用

    • 波分多路复用

    • 码分多路复用

      • 主要用于无线通信系统
    • 随机访问介质访问控制

    • ALOHA 协议

      • 纯 ALOHA 协议
      • 时隙 ALOHA 协议
    • CSMA 协议

      • 1-坚持 CSMA
      • 非坚持 CSMA
      • p-坚持 CSMA
    • CSMA/CD 协议

    • CSMA/CA 协议

    • 轮询访问介质访问控制

    • 令牌传递协议

  9. 拓扑结构 :: 总线形网络, 星形网络, 环形网络, 网状网络

    • 在局域网和传统电话网中普遍使用
  10. MAC 帧

  11. 参考模型

    • CSMA/CD 协议
    • 最小长度为 64B, 由 CSMA/CD 的算法

相关帖子

欢迎来到这里!

我们正在构建一个小众社区,大家在这里相互信任,以平等 • 自由 • 奔放的价值观进行分享交流。最终,希望大家能够找到与自己志同道合的伙伴,共同成长。

注册 关于
请输入回帖内容 ...

推荐标签 标签

  • WebClipper

    Web Clipper 是一款浏览器剪藏扩展,它可以帮助你把网页内容剪藏到本地。

    3 引用 • 9 回帖
  • 钉钉

    钉钉,专为中国企业打造的免费沟通协同多端平台, 阿里巴巴出品。

    15 引用 • 67 回帖 • 311 关注
  • Sphinx

    Sphinx 是一个基于 SQL 的全文检索引擎,可以结合 MySQL、PostgreSQL 做全文搜索,它可以提供比数据库本身更专业的搜索功能,使得应用程序更容易实现专业化的全文检索。

    1 引用 • 211 关注
  • PostgreSQL

    PostgreSQL 是一款功能强大的企业级数据库系统,在 BSD 开源许可证下发布。

    22 引用 • 22 回帖 • 3 关注
  • uTools

    uTools 是一个极简、插件化、跨平台的现代桌面软件。通过自由选配丰富的插件,打造你得心应手的工具集合。

    6 引用 • 14 回帖
  • 开源

    Open Source, Open Mind, Open Sight, Open Future!

    410 引用 • 3578 回帖 • 1 关注
  • WordPress

    WordPress 是一个使用 PHP 语言开发的博客平台,用户可以在支持 PHP 和 MySQL 数据库的服务器上架设自己的博客。也可以把 WordPress 当作一个内容管理系统(CMS)来使用。WordPress 是一个免费的开源项目,在 GNU 通用公共许可证(GPLv2)下授权发布。

    66 引用 • 114 回帖 • 209 关注
  • OpenResty

    OpenResty 是一个基于 NGINX 与 Lua 的高性能 Web 平台,其内部集成了大量精良的 Lua 库、第三方模块以及大多数的依赖项。用于方便地搭建能够处理超高并发、扩展性极高的动态 Web 应用、Web 服务和动态网关。

    17 引用 • 38 关注
  • Caddy

    Caddy 是一款默认自动启用 HTTPS 的 HTTP/2 Web 服务器。

    12 引用 • 54 回帖 • 166 关注
  • GitHub

    GitHub 于 2008 年上线,目前,除了 Git 代码仓库托管及基本的 Web 管理界面以外,还提供了订阅、讨论组、文本渲染、在线文件编辑器、协作图谱(报表)、代码片段分享(Gist)等功能。正因为这些功能所提供的便利,又经过长期的积累,GitHub 的用户活跃度很高,在开源世界里享有深远的声望,并形成了社交化编程文化(Social Coding)。

    210 引用 • 2036 回帖
  • 区块链

    区块链是分布式数据存储、点对点传输、共识机制、加密算法等计算机技术的新型应用模式。所谓共识机制是区块链系统中实现不同节点之间建立信任、获取权益的数学算法 。

    92 引用 • 752 回帖
  • Facebook

    Facebook 是一个联系朋友的社交工具。大家可以通过它和朋友、同事、同学以及周围的人保持互动交流,分享无限上传的图片,发布链接和视频,更可以增进对朋友的了解。

    4 引用 • 15 回帖 • 438 关注
  • 博客

    记录并分享人生的经历。

    273 引用 • 2388 回帖 • 1 关注
  • Ant-Design

    Ant Design 是服务于企业级产品的设计体系,基于确定和自然的设计价值观上的模块化解决方案,让设计者和开发者专注于更好的用户体验。

    17 引用 • 23 回帖 • 8 关注
  • V2EX

    V2EX 是创意工作者们的社区。这里目前汇聚了超过 400,000 名主要来自互联网行业、游戏行业和媒体行业的创意工作者。V2EX 希望能够成为创意工作者们的生活和事业的一部分。

    17 引用 • 236 回帖 • 298 关注
  • WiFiDog

    WiFiDog 是一套开源的无线热点认证管理工具,主要功能包括:位置相关的内容递送;用户认证和授权;集中式网络监控。

    1 引用 • 7 回帖 • 598 关注
  • 分享

    有什么新发现就分享给大家吧!

    247 引用 • 1793 回帖
  • GAE

    Google App Engine(GAE)是 Google 管理的数据中心中用于 WEB 应用程序的开发和托管的平台。2008 年 4 月 发布第一个测试版本。目前支持 Python、Java 和 Go 开发部署。全球已有数十万的开发者在其上开发了众多的应用。

    14 引用 • 42 回帖 • 793 关注
  • Follow
    4 引用 • 12 回帖
  • NGINX

    NGINX 是一个高性能的 HTTP 和反向代理服务器,也是一个 IMAP/POP3/SMTP 代理服务器。 NGINX 是由 Igor Sysoev 为俄罗斯访问量第二的 Rambler.ru 站点开发的,第一个公开版本 0.1.0 发布于 2004 年 10 月 4 日。

    315 引用 • 547 回帖 • 2 关注
  • Angular

    AngularAngularJS 的新版本。

    26 引用 • 66 回帖 • 544 关注
  • Flutter

    Flutter 是谷歌的移动 UI 框架,可以快速在 iOS 和 Android 上构建高质量的原生用户界面。 Flutter 可以与现有的代码一起工作,它正在被越来越多的开发者和组织使用,并且 Flutter 是完全免费、开源的。

    39 引用 • 92 回帖 • 1 关注
  • WebSocket

    WebSocket 是 HTML5 中定义的一种新协议,它实现了浏览器与服务器之间的全双工通信(full-duplex)。

    48 引用 • 206 回帖 • 303 关注
  • 旅游

    希望你我能在旅途中找到人生的下一站。

    93 引用 • 901 回帖 • 2 关注
  • 游戏

    沉迷游戏伤身,强撸灰飞烟灭。

    178 引用 • 816 回帖 • 2 关注
  • OneNote
    1 引用 • 3 回帖 • 2 关注
  • Chrome

    Chrome 又称 Google 浏览器,是一个由谷歌公司开发的网页浏览器。该浏览器是基于其他开源软件所编写,包括 WebKit,目标是提升稳定性、速度和安全性,并创造出简单且有效率的使用者界面。

    62 引用 • 289 回帖 • 1 关注