内存数据库FastDB和SQLite性能测评

本贴最后更新于 4122 天前,其中的信息可能已经水流花落

一、引言

在很多项目中,经常会碰到这样的需求,需要对大量数据进行快速存储、查询、删除等操作,特别是在一些针对诸如运营商、银行等大型企业的应用中,这些 需求尤为常见。比如智能网中的大量在线并发用户的数据管理、软交换平台中的在线信息交互、宽带/3G等数据网中在线用户行为记录等等。

针对这些情形,我们通常需要选择高性能的数据库产品,而且通常需要使用内存数据库,顾名思义,内存数据库指的是所有的数据访问控制都在内存中进行, 这是与磁盘数据库相对而言的,磁盘数据库虽然也有一定的缓存机制,但都不能避免从外设到内存的交换,而这种交换过程对性能的损耗是致命的,目前主流数据库 如SYBASE、ORACLE等都有这种缓存机制,如将特定表绑定一定的缓存,从而在一定程度上改善数据吞吐性能。而内存数据库几乎可以完全避免这种内外 存数据交换的发生,特别是在物理内存足够大的设备上尤其如此,通常这种数据库也被称为主存数据库(Main Memory DataBase, MMDB)。

二、主存数据库比较

目前比较知名的商业内存数据库有,ORACLE的TimesTen,MCObject的eXtremeDB、韩国的Altibase等,这些数据库 产品性能都非常的强劲,当然价格也相当的强劲,在非特大型系统建设时,通常让人望而却步。于是退而求其次,免费开源内存数据库给了我们第二种选择。 Berkeley DB,SQLite,MonetDB,FastDB,H2等,不一而足。本文主要针对SQLite和FastDB进行性能测评。

2.1 测试准备

首先,笔者通过对评测数据的调研发现,通常认为,BDB性能不如SQLite,参考"免费的实时数据库,我们该选谁?---BerkeleyDB与SQLite评测对比 "

上文中还提到,"据说FastDB很快,但数据库大小不能大于物理内存...",于是笔者对FastDB产生了兴趣,从FastDB作者的网站看到关于 这点的介绍,并不是说数据库大小不能大于物理内存,而是说数据库大小超过物理内存时,性能与不超过时相比会有一定的降低(降低幅度未作说明,估计是不推荐 使用)。幸运地是,目前物理内存实在说不上贵,服务器内存在10G之上都是很正常的事情了。因此可以根据具体项目数据量需求来确定是否能使用 FastDB,比如并不是所有的表都需要放在内存中。下面即将描述的测试表明,一旦使用FastDB,其性能在免费MMDB产品中绝对可执牛耳。由于已经 有人对BDB和SQLite进行过比较,因此下面仅将FastDB与其中的优胜者SQLite进行性能测评。SQLite采用内存模式,即打开数据库使使 用":memory:"参数,此时SQLite不产生数据库文件,所有操作都在内存中,这一点需要特殊说明,与之不同的是,FastDB有两种模式,磁盘 模式和无盘模式,前者会产生磁盘文件,后者则与SQLite的内存模式相同。

说是测评,其实过程也很简单,无非是设计测试CASE,编写测试CODE,输出测试RESULT,最后做出结论。通常我们认为带索引的插入耗时相对 于查询和删除来说比较长,因此首先来看插入性能。采用一个简单的表来完成接下来的所有测试,表中仅包含两个字段,INTEGER intKey,和VARCHAR strKey。测试平台为Window7 32bit系统(Evaluation Copy 7127),编译器VC6 SP6。在DELL INSPIRON 640m上运行,CPU为Intel Core 2 CPU T5500 @ 1.66GHZ,内存2.5G。

对FastDB(采用磁盘模式),表结构的定义如下:

class _TestTable 

public: 
    db_int8 intKey; 
    char const* strKey; 
    TYPE_DESCRIPTOR((KEY(intKey, INDEXED), KEY(strKey, INDEXED))); 
};

REGISTER(_TestTable);

对SQLite,建表SQL如下:

CREATE TABLE [_TestTable] ( [intKey] INTEGER  NOT NULL PRIMARY KEY, [strKey] VARCHAR(50)  NULL)

2.2 不同事务模式下的插入性能比较

2.2.1 FastDB磁盘模式

我们首先按照批量事务处理的模式将intKey从1到nRecords(记录条数),并指定相应的strKey,分别调用相应的接口(均为原始 API)插入到两张表中,这里的批量事务处理模式指的是,比如插入10000条记录,插第一条之前开始事务,最后一条之后结束事务。此时在插入不同数目记 录时的表现分别如下(一万条、十万条、72万条、一百万条):

批量事务提交:

E:\intrest\FastDB\PerfTest\Debug>PerfTest.exe 
[FASTDB] Elapsed time for inserting 10000 record: 63 ms 
[SQLITE] Elapsed time for inserting 10000 record: 639 ms

E:\intrest\FastDB\PerfTest\Debug>del *.fdb (清除测试生成数据,重新测试,下同。)

E:\intrest\FastDB\PerfTest\Debug>PerfTest.exe 
[FASTDB] Elapsed time for inserting 100000 record: 1186 ms 
[SQLITE] Elapsed time for inserting 100000 record: 6318 ms

E:\intrest\FastDB\PerfTest\Debug>del *.fdb

E:\intrest\FastDB\PerfTest\Debug>PerfTest.exe 
[FASTDB] Elapsed time for inserting 7200000 record: 152460 ms 
[SQLITE] Elapsed time for inserting 7200000 record: 560121 ms

E:\intrest\FastDB\PerfTest\Debug>PerfTest.exe 
[FASTDB] Elapsed time for inserting 1000000 record: 15522 ms 
[SQLITE] Elapsed time for inserting 1000000 record: 67423 ms

从上我们可以看出,在批量事务模式下,FastDB比SQLite的插入性能提高了3-10倍。但是在很多情况下,我们可能会需要逐条逐条的事务提交,下面给出了逐条事务模式的测试结果:

E:\intrest\FastDB\PerfTest\Debug>PerfTest.exe 
[FASTDB] Elapsed time for inserting 10000 record: 57315 ms(这个太恐怖了,不调整的话没法使用) 
[SQLITE] Elapsed time for inserting 10000 record: 780 ms

E:\intrest\FastDB\PerfTest\Debug>PerfTest.exe (SQLITE显式分条事务) 
[FASTDB] Elapsed time for inserting 10000 record: 59967 ms 
[SQLITE] Elapsed time for inserting 10000 record: 1154 ms

从上我们可以看出,FastDB在这种情形下的性能急遽降低,降到一个几乎不能接收的水平。经过对FastDB的源代码分析(开源的好处体现出来 了),发现FastDB在每次事务提交时,都会将变更的数据内容同步到磁盘文件中(这是因为我们采用了磁盘模式),因此造成性能的显著降低。

直观上看,解决FastDB的这个问题有两种办法,一是避免每次事务提交时同步到磁盘,因为在这种应用中,这种同步操作并不需要实时进行,通常每隔 一段时间同步一次就可以了(比如1S、1Min、等根据具体项目的可靠性需要);二是使用前面提到的FastDB无盘(DISKLESS)模式。

我们首先来看第一种方案,通过SEARCH FastDB文档(文档和社区是FastDB的一个软肋),我们发现作者已经考虑到了这个问题,FastDB为数据库提供了precommit的接口,用 于完成除sync到磁盘文件外的所有事物操作,如释放mutex资源等。同时提供了backup接口,用来完成内存数据到磁盘文件的备份,甚至支持打开数 据库时同时指定定时备份到磁盘文件的间隔。这样一来,每次事务提交的效率理论上会得到大大提高,并且通过定时备份机制可以保证数据的可靠性。我们来看使用 precommit进行逐条事务提交时FastDB的表现:

E:\intrest\FastDB\PerfTest\Debug>PerfTest(使用precommit逐条提交事务) 
[FASTDB] Elapsed time for inserting 10000 record: 62 ms 
[SQLITE] Elapsed time for inserting 10000 record: 1170 ms

E:\intrest\FastDB\PerfTest\Debug>PerfTest 
[FASTDB] Elapsed time for inserting 100000 record: 1170 ms 
[SQLITE] Elapsed time for inserting 100000 record: 11747 ms

E:\intrest\FastDB\PerfTest\Debug>PerfTest 
[FASTDB] Elapsed time for inserting 1000000 record: 8081 ms 
[SQLITE] Elapsed time for inserting 1000000 record: 125768 ms

从上可以看出,在逐条事务模式下,通过使用precommit技术,FastDB性能比SQLite提高了10倍左右。当然也许有读者怀疑加了备份 机制之后的性能,确实笔者没有进行这项测试,但是,需要注意的是,FastDB在数据库关闭时会强制sync到磁盘文件,但SQLite没有这种功能,同 时,在进行这项测试时,两种数据库都没有定时备份机制,因此该比较是公平的。

2.2.2 FastDB无盘模式

再来看第二种方案,FastDB采用无盘(通过编译选项控制生成DISKLESS版本)模式,此时FastDB初始化一段共享内存(shmat or mmap),这个初始大小通常很大,并且运行期不能扩展(无盘模式的劣势)。我们将初始共享内存设置为1G,得到的测试结果如下:

E:\intrest\FastDB\PerfTest\Debug>PerfTest.exe 
[FASTDB] Elapsed time for inserting 100000 record: 624 ms (批量事务提交) 
[SQLITE] Elapsed time for inserting 100000 record: 11544 ms

E:\intrest\FastDB\PerfTest\Debug>PerfTest.exe 
[FASTDB] Elapsed time for inserting 100000 record: 7410 ms (逐条事务提交) 
[SQLITE] Elapsed time for inserting 100000 record: 11560 ms

E:\intrest\FastDB\PerfTest\Debug>PerfTest.exe 
[FASTDB] Elapsed time for inserting 1000000 record: 134660 ms 
[SQLITE] Elapsed time for inserting 1000000 record: 120167 ms

E:\intrest\FastDB\PerfTest\Debug>PerfTest.exe 
[FASTDB] Elapsed time for inserting 250000 record: 23666 ms 
[SQLITE] Elapsed time for inserting 250000 record: 29110 ms

从上我们可以看出,无盘模式在大数据量下的表现与SQLite相近,这一点不是很好理解,需要研究DISKLESS的设计模式,理论上应该与 precommit模式性能相近。但是实践是检验真理的唯一标准。我们可以看出,磁盘模式的precommit方式性能表现卓越,不管从横向还是纵向来 看。

2.3 查询性能比较

下面的比较都使用磁盘模式的precommit方式,再来看索引查询的性能表现,测试时都是先插入十万条数据后,再分别对该十万条数据进行查询,需 要注意的是我们同时对FastDB是否增加HASH索引的性能进行了横向测评,FastDB增加HASH索引很简单,通过修改TYPE- DESCRIPTOR来完成,上面的class中改为TYPE_DESCRIPTOR((KEY(intKey, INDEXED), KEY(strKey, INDEXED)));即为intKey增加了Hash索引。

E:\intrest\FastDB\PerfTest\Debug>perftest (FASTDB哈希索引) 
[FASTDB] Elapsed time for inserting 100000 record: 624 ms 
[FASTDB] Elapsed time for 100000 index searches: 328 ms 
[SQLITE] Elapsed time for inserting 100000 record: 10312 ms 
[SQLITE] Elapsed time for 100000 index searches: 10935 ms

E:\intrest\FastDB\PerfTest\Debug>perftest(FASTDB非哈希索引) 
[FASTDB] Elapsed time for inserting 100000 record: 577 ms 
[FASTDB] Elapsed time for 100000 index searches: 515 ms 
[SQLITE] Elapsed time for inserting 100000 record: 10343 ms 
[SQLITE] Elapsed time for 100000 index searches: 9532 ms

从测试结果可以看出,查询十万条索引记录的效率,FastDB要比SQLite快20倍左右,并且在增加HASH索引后能够得到进一步的改善。

2.4 删除性能比较及综合表现

最后,我们在测试删除效率时,同时综合来看FastDB与SQLite之间插入、查询、删除的性能表现:

插入、查询、删除综合比较:

E:\intrest\FastDB\PerfTest\Debug>perftest(批量删除,FASTDB.removeall(),SQLITE.delete*) 
[FASTDB] Elapsed time for inserting 100000 record: 608 ms 
[FASTDB] Elapsed time for 100000 index searches: 687 ms 
[FASTDB] Elapsed time for deleting all 100000 records: 16 ms 
[SQLITE] Elapsed time for inserting 100000 record: 11107 ms 
[SQLITE] Elapsed time for 100000 index searches: 10062 ms 
[SQLITE] Elapsed time for deleting all 100000 records: 16 ms

E:\intrest\FastDB\PerfTest\Debug>perftest(逐条删除) 
[FASTDB] Elapsed time for inserting 100000 record: 593 ms 
[FASTDB] Elapsed time for 100000 index searches: 562 ms 
[FASTDB] Elapsed time for deleting all 100000 records one by one: 905 ms 
[SQLITE] Elapsed time for inserting 100000 record: 10406 ms 
[SQLITE] Elapsed time for 100000 index searches: 10249 ms 
[SQLITE] Elapsed time for deleting all 100000 records one by one: 8923 ms

从上可以看出,就删除效率而言,批量删除的速度二者相近,而逐条删除时,十万条记录的删除累积,FastDB比SQLite快了10倍左右。

 

2.5 总结

优点:FastDB磁盘模式下,采用precommit方式,性能远远优于SQLite,并且FastDB提供了完善的备份恢复机制,能够保证数据 安全。FastDB的无盘模式在小数据量时表现优越,并且不会产生磁盘数据文件,也不能加载已经保存的数据库文件,看起来更像是针对嵌入式设备(如智能手 机、PDA等)开发的,对于这种场景可以考虑使用无盘模式。

缺点:FastDB目前能够SEARCH到的比较著名的应用是PingTel公司的开源统一通信产品SIPX,该产品采用的是FastDB的磁盘模 式。这可能多少与FastDB的完全授权模式有关,而SQLite采用的是GPL的不允许闭源的商业发布。当然主要还是社区的不成熟,这从Google Trends的搜索结果也能看出。社区的不成熟会带来学习成本的增加,这一点在选型时也需要考虑。

  • FastDB
    1 引用
  • SQLite

    SQLite 是一个进程内的库,实现了自给自足的、无服务器的、零配置的、事务性的 SQL 数据库引擎。SQLite 是全世界使用最为广泛的数据库引擎。

    5 引用 • 7 回帖 • 2 关注
  • 数据库

    据说 99% 的性能瓶颈都在数据库。

    342 引用 • 708 回帖

相关帖子

欢迎来到这里!

我们正在构建一个小众社区,大家在这里相互信任,以平等 • 自由 • 奔放的价值观进行分享交流。最终,希望大家能够找到与自己志同道合的伙伴,共同成长。

注册 关于
请输入回帖内容 ...

推荐标签 标签

  • Vue.js

    Vue.js(读音 /vju ː/,类似于 view)是一个构建数据驱动的 Web 界面库。Vue.js 的目标是通过尽可能简单的 API 实现响应的数据绑定和组合的视图组件。

    266 引用 • 665 回帖 • 1 关注
  • Elasticsearch

    Elasticsearch 是一个基于 Lucene 的搜索服务器。它提供了一个分布式多用户能力的全文搜索引擎,基于 RESTful 接口。Elasticsearch 是用 Java 开发的,并作为 Apache 许可条款下的开放源码发布,是当前流行的企业级搜索引擎。设计用于云计算中,能够达到实时搜索,稳定,可靠,快速,安装使用方便。

    117 引用 • 99 回帖 • 212 关注
  • WordPress

    WordPress 是一个使用 PHP 语言开发的博客平台,用户可以在支持 PHP 和 MySQL 数据库的服务器上架设自己的博客。也可以把 WordPress 当作一个内容管理系统(CMS)来使用。WordPress 是一个免费的开源项目,在 GNU 通用公共许可证(GPLv2)下授权发布。

    66 引用 • 114 回帖 • 230 关注
  • 设计模式

    设计模式(Design pattern)代表了最佳的实践,通常被有经验的面向对象的软件开发人员所采用。设计模式是软件开发人员在软件开发过程中面临的一般问题的解决方案。这些解决方案是众多软件开发人员经过相当长的一段时间的试验和错误总结出来的。

    200 引用 • 120 回帖 • 1 关注
  • SMTP

    SMTP(Simple Mail Transfer Protocol)即简单邮件传输协议,它是一组用于由源地址到目的地址传送邮件的规则,由它来控制信件的中转方式。SMTP 协议属于 TCP/IP 协议簇,它帮助每台计算机在发送或中转信件时找到下一个目的地。

    4 引用 • 18 回帖 • 617 关注
  • 智能合约

    智能合约(Smart contract)是一种旨在以信息化方式传播、验证或执行合同的计算机协议。智能合约允许在没有第三方的情况下进行可信交易,这些交易可追踪且不可逆转。智能合约概念于 1994 年由 Nick Szabo 首次提出。

    1 引用 • 11 回帖 • 3 关注
  • Hibernate

    Hibernate 是一个开放源代码的对象关系映射框架,它对 JDBC 进行了非常轻量级的对象封装,使得 Java 程序员可以随心所欲的使用对象编程思维来操纵数据库。

    39 引用 • 103 回帖 • 709 关注
  • HBase

    HBase 是一个分布式的、面向列的开源数据库,该技术来源于 Fay Chang 所撰写的 Google 论文 “Bigtable:一个结构化数据的分布式存储系统”。就像 Bigtable 利用了 Google 文件系统所提供的分布式数据存储一样,HBase 在 Hadoop 之上提供了类似于 Bigtable 的能力。

    17 引用 • 6 回帖 • 75 关注
  • 黑曜石

    黑曜石是一款强大的知识库工具,支持本地 Markdown 文件编辑,支持双向链接和关系图。

    A second brain, for you, forever.

    15 引用 • 122 回帖
  • Latke

    Latke 是一款以 JSON 为主的 Java Web 框架。

    71 引用 • 535 回帖 • 787 关注
  • B3log

    B3log 是一个开源组织,名字来源于“Bulletin Board Blog”缩写,目标是将独立博客与论坛结合,形成一种新的网络社区体验,详细请看 B3log 构思。目前 B3log 已经开源了多款产品:SymSoloVditor思源笔记

    1063 引用 • 3453 回帖 • 202 关注
  • Java

    Java 是一种可以撰写跨平台应用软件的面向对象的程序设计语言,是由 Sun Microsystems 公司于 1995 年 5 月推出的。Java 技术具有卓越的通用性、高效性、平台移植性和安全性。

    3187 引用 • 8213 回帖
  • 尊园地产

    昆明尊园房地产经纪有限公司,即:Kunming Zunyuan Property Agency Company Limited(简称“尊园地产”)于 2007 年 6 月开始筹备,2007 年 8 月 18 日正式成立,注册资本 200 万元,公司性质为股份经纪有限公司,主营业务为:代租、代售、代办产权过户、办理银行按揭、担保、抵押、评估等。

    1 引用 • 22 回帖 • 763 关注
  • AngularJS

    AngularJS 诞生于 2009 年,由 Misko Hevery 等人创建,后为 Google 所收购。是一款优秀的前端 JS 框架,已经被用于 Google 的多款产品当中。AngularJS 有着诸多特性,最为核心的是:MVC、模块化、自动化双向数据绑定、语义化标签、依赖注入等。2.0 版本后已经改名为 Angular。

    12 引用 • 50 回帖 • 474 关注
  • jQuery

    jQuery 是一套跨浏览器的 JavaScript 库,强化 HTML 与 JavaScript 之间的操作。由 John Resig 在 2006 年 1 月的 BarCamp NYC 上释出第一个版本。全球约有 28% 的网站使用 jQuery,是非常受欢迎的 JavaScript 库。

    63 引用 • 134 回帖 • 722 关注
  • 职场

    找到自己的位置,萌新烦恼少。

    127 引用 • 1705 回帖
  • Chrome

    Chrome 又称 Google 浏览器,是一个由谷歌公司开发的网页浏览器。该浏览器是基于其他开源软件所编写,包括 WebKit,目标是提升稳定性、速度和安全性,并创造出简单且有效率的使用者界面。

    62 引用 • 289 回帖
  • LaTeX

    LaTeX(音译“拉泰赫”)是一种基于 ΤΕΧ 的排版系统,由美国计算机学家莱斯利·兰伯特(Leslie Lamport)在 20 世纪 80 年代初期开发,利用这种格式,即使使用者没有排版和程序设计的知识也可以充分发挥由 TeX 所提供的强大功能,能在几天,甚至几小时内生成很多具有书籍质量的印刷品。对于生成复杂表格和数学公式,这一点表现得尤为突出。因此它非常适用于生成高印刷质量的科技和数学类文档。

    12 引用 • 54 回帖 • 62 关注
  • GraphQL

    GraphQL 是一个用于 API 的查询语言,是一个使用基于类型系统来执行查询的服务端运行时(类型系统由你的数据定义)。GraphQL 并没有和任何特定数据库或者存储引擎绑定,而是依靠你现有的代码和数据支撑。

    4 引用 • 3 回帖 • 8 关注
  • 知乎

    知乎是网络问答社区,连接各行各业的用户。用户分享着彼此的知识、经验和见解,为中文互联网源源不断地提供多种多样的信息。

    10 引用 • 66 回帖
  • SpaceVim

    SpaceVim 是一个社区驱动的模块化 vim/neovim 配置集合,以模块的方式组织管理插件以
    及相关配置,为不同的语言开发量身定制了相关的开发模块,该模块提供代码自动补全,
    语法检查、格式化、调试、REPL 等特性。用户仅需载入相关语言的模块即可得到一个开箱
    即用的 Vim-IDE。

    3 引用 • 31 回帖 • 101 关注
  • CSDN

    CSDN (Chinese Software Developer Network) 创立于 1999 年,是中国的 IT 社区和服务平台,为中国的软件开发者和 IT 从业者提供知识传播、职业发展、软件开发等全生命周期服务,满足他们在职业发展中学习及共享知识和信息、建立职业发展社交圈、通过软件开发实现技术商业化等刚性需求。

    14 引用 • 155 回帖
  • Eclipse

    Eclipse 是一个开放源代码的、基于 Java 的可扩展开发平台。就其本身而言,它只是一个框架和一组服务,用于通过插件组件构建开发环境。

    75 引用 • 258 回帖 • 619 关注
  • HHKB

    HHKB 是富士通的 Happy Hacking 系列电容键盘。电容键盘即无接点静电电容式键盘(Capacitive Keyboard)。

    5 引用 • 74 回帖 • 471 关注
  • MongoDB

    MongoDB(来自于英文单词“Humongous”,中文含义为“庞大”)是一个基于分布式文件存储的数据库,由 C++ 语言编写。旨在为应用提供可扩展的高性能数据存储解决方案。MongoDB 是一个介于关系数据库和非关系数据库之间的产品,是非关系数据库当中功能最丰富,最像关系数据库的。它支持的数据结构非常松散,是类似 JSON 的 BSON 格式,因此可以存储比较复杂的数据类型。

    90 引用 • 59 回帖 • 2 关注
  • Redis

    Redis 是一个开源的使用 ANSI C 语言编写、支持网络、可基于内存亦可持久化的日志型、Key-Value 数据库,并提供多种语言的 API。从 2010 年 3 月 15 日起,Redis 的开发工作由 VMware 主持。从 2013 年 5 月开始,Redis 的开发由 Pivotal 赞助。

    286 引用 • 248 回帖 • 62 关注
  • Electron

    Electron 基于 Chromium 和 Node.js,让你可以使用 HTML、CSS 和 JavaScript 构建应用。它是一个由 GitHub 及众多贡献者组成的活跃社区共同维护的开源项目,兼容 Mac、Windows 和 Linux,它构建的应用可在这三个操作系统上面运行。

    15 引用 • 136 回帖