leetcode解题报告-树

本贴最后更新于 2166 天前,其中的信息可能已经水流花落

树是最常考察的数据结构。由于树的定义是递归的(树的子树也是树),因此大部分的树的问题,如求树的最大深度、判定树是否平衡、共同祖先等,可以由递归进行求解,这也是最简单最直接的方式。

但是,通常面试官都希望你答出非递归解法。如前中后序的非递归解法都是借助栈进行实现(利用栈先进后出的特性,结合进出栈的时机)。先序列遍历和中序遍历对栈的操作相同,栈顶左子一直进栈直到最左下,弹栈,右子进栈。然后循环操作即可。唯一不同是先序遍历是在进栈前访问,中序遍历是在弹栈的时候访问。后序遍历,进栈的顺序为根右左,由于栈的特性会使出栈时为左右根。进栈时需标记当前节点左右子是否已经进栈了。树的按层次遍历是借助队列先进先出的特性实现的。

对应的树的遍历方法有 DFS 和 BFS,DFS 和先序遍历是一致的。BFS 和按层次遍历是一致的。

另外,在解决树问题的时候需要充分利用该树的特性,如二叉搜索树,完全二叉树的特性。


##94. Binary Tree Inorder Traversal (中序遍历)

  • 难度:Medium

  • 题意:
    给一个二叉树,返回该树的中序遍历。

  • 思路 1:
    中序遍历即左中右,思路 1 先使用递归实现,递归是最方便书写且最容易理解的,因为树本身就是递归定义的。递归访问左子树,输出根,递归访问右子树。

  • 代码 1:

      class Solution:
          # @param {TreeNode} root
          # @return {integer[]}
          res=[]
          def inorderTraversal(self, root):
              self.res=[]
              self.reduce(root)
              return self.res
          def reduce(self,root):
              if root and root.left:self.reduce(root.left)
              if root:self.res.append(root.val)
              if root and root.right:self.reduce(root.right)
    
  • 思路 2:
    通常面试中,面试官肯定不会想看到上面的解法,一般会让用非递归实现。中序遍历的非递归实现是借助栈实现的。将根节点入栈,若栈顶节点存在左子树,则左子树进栈,否则出栈并添加到结果中。

      class Solution:
          # @param {TreeNode} root
          # @return {integer[]}
          def inorderTraversal(self, root):
              result = []
              stack = []
              if not root: return result
              stack.append(root)
              while stack:
                  if stack[-1].left:
                      stack.append(stack[-1].left)
                      stack[-2].left = None
                  else:
                      node = stack.pop(-1)
                      result.append(node.val)
                      if node.right:
                          stack.append(node.right)
              return result
    

##96. Unique Binary Search Trees (BST)

  • 难度:Medium

  • 题意:
    给定整数 n,求出以 1...n 作为节点,有多少种结构不同的二叉搜索树

  • 思路:
    每个节点都可以作为跟,对于每个节点来说,可以构成二叉树的总类型数=左子树总类型数*右子树总类型数。因此可以采用 dp 解决。

  • 代码:

      class Solution:
          # @param {integer} n
          # @return {integer}
          def numTrees(self, n):
              dp = [1,1]
              for i in range(2,n+1):
                  dp.append(0)
                  for j in range(0,i):
                      dp[i] += dp[j]*dp[i-j-1]
              return dp[n]
    

##95. Unique Binary Search Trees II (BST)

  • 难度:Medium

  • 题意:
    给定数字 n,要求用数字 1 到 n 构造出所有不同的二叉搜索树

  • 思路:
    二叉搜索树,左子树 < 根 < 右子树。这也是我们构造的思路。对于(left,right),我们循环遍历设置 i 为根,则左子树的范围是(left,i-1),右子树的范围是(i+1,right)。递归构造左子树和右子树,返回所有可能的根。

  • 代码:

      class Solution:
          # @param {integer} n
          # @return {TreeNode[]}
          def generateTrees(self, n):
              return self.creatTrees(1,n)
    
          def creatTrees(self,start,end):
              result = []
              if start>end:
                  result.append(None)
                  return result
              for i in range(start,end+1):
                  lefts = self.creatTrees(start,i-1)
                  rights = self.creatTrees(i+1,end)
                  for left in lefts:
                      for right in rights:
                          root = TreeNode(i)
                          root.left = left
                          root.right = right
                          result.append(root)
              return result
    

##98. Validate Binary Search Tree (BST)

  • 难度:Medium

  • 题意:
    给定一个二叉树,检查其是否而二叉搜索树。

  • 思路:
    二叉搜索树的特点是 左 < 根 < 右,因此,对二叉搜索数进行中序遍历,输出的结果即为正序。

  • 代码:

      class Solution:
          def LDR(self, root):
              if root != None:
                  if root.left != None:
                      self.LDR(root.left)
                  self.tree.append(root.val)
                  if root.right != None:
                      self.LDR(root.right)
    
          # @param {TreeNode} root
          # @return {boolean}
          def isValidBST(self, root):
              self.tree=[]
              self.LDR(root)
              i=0
              while i<len(self.tree)-1:
                  if self.tree[i] >= self.tree[i+1]:
                      return False
                  i+=1
              return True
    

##99. Recover Binary Search Tree (BST)

  • 难度:Hard

  • 题意:
    二叉搜索树中有两个节点被调换了位置,在不改变数据结构的基础上还原二叉搜索树。要求在 o(n)空间复杂度内解决。

  • 思路:
    这道题有一种巧妙的思路利用了递归中序遍历的递归和回溯过程。这里使用 pre 来记录被遍历的前一个节点。中序遍历的递归方法是,递归访问左子树到最左下端,然后回溯,再对右子进行递归。回溯的时候,pre 是当前访问节点的左子,再向右递归时,pre 是当前右子的根,因此总有 pre<root 成立,若不成立则为被调换的点。

  • 思路:

      class Solution(object):
          def recoverTree(self, root):
              """
              :type root: TreeNode
              :rtype: void Do not return anything, modify root in-place instead.
              """
              self.mis1,self.mis2,self.pre=None,None,None
              self.traval(root)
              if self.mis1 and self.mis2:
                  self.mis1.val,self.mis2.val=self.mis2.val,self.mis1.val
    
          def traval(self,root):
              if not root:return
              if root.left:self.traval(root.left)
              if self.pre and root.val<self.pre.val:
                  if not self.mis1:
                      self.mis1=self.pre
                  self.mis2=root
              self.pre = root
              if root.right:self.traval(root.right)
    

##100. Same Tree (递归)

  • 难度:Easy

  • 题意:
    给定两个二叉树,验证这两个树是否相等。当且仅当这两棵树结构相同且每个节点值相同时,才认为是相等。

  • 思路:
    两颗树相同,当且仅当,根的值相等,且左子树相等,右子树相等。因此,可以用递归方便地求解。

  • 代码:

      class Solution:
          # @param {TreeNode} p
          # @param {TreeNode} q
          # @return {boolean}
          def isSameTree(self, p, q):
              if not p and not q: return True
              elif (p and not q) or (q and not p) or p.val != q.val: return False
              else: return self.isSameTree(p.left,q.left) and self.isSameTree(p.right,q.right)
    

##101. Symmetric Tree (递归)

  • 难度:Easy

  • 题意:
    给定一棵二叉树,检查是否为镜像对称。

  • 思路:
    一棵树是否为镜像,取决与左子树和右子树是否镜像对称。左子树和右子树是否镜像对称,取决于左子树的左子树和右子树的右子树是否镜像对称,且,左子树的右子树和右子树的左子树是否镜像对称。因此用递归可以求解。

  • 代码:

      class Solution:
          # @param {TreeNode} root
          # @return {boolean}
          def isSymmetric(self, root):
              if not root:return True
              return self.isSame(root.left,root.right)
    
          def isSame(self, p, q):
              if not p and not q: return True
              elif (p and not q) or (q and not p) or p.val != q.val: return False
              else: return self.isSame(p.left,q.right) and self.isSame(p.right,q.left)
    

##102. Binary Tree Level Order Traversal (按层次遍历)

  • 难度:Easy

  • 题意: 
    给定一棵二叉树,返回其按层次遍历的节点值序列。输出将同一层次放在同一列表中。

  • 思路:
    树的按层次遍历借助队列完成,将根节点入队。若队列中有节点,弹出出队头,并把队头节点的所有子节点添加到队尾。由于题目要求把同一层的节点放在同一列表中,因此我们的数据结构是 levels[[]],对应的操作是,遍历每一层时,创建一个新的 newlevel[],访问 levels 列表中最后一层的所有节点,并添加到每个节点的子节点到 newlevel 中,最后再把 newlevel 添加到 levels 中。

  • 代码:

      class Solution:
          # @param {TreeNode} root
          # @return {integer[][]}
          def levelOrder(self, root):
              if not root :return []
              levels = [[root]]
              values = [[root.val]]
              for level in levels:
                  newLevel = []
                  newValue = []
                  for node in level:
                      if node.left:
                          newLevel.append(node.left)
                          newValue.append(node.left.val)
                      if node.right:
                          newLevel.append(node.right)
                          newValue.append(node.right.val)
                  if newLevel:
                      levels.append(newLevel)
                      values.append(newValue)
              return values
    

##103. Binary Tree Zigzag Level Order Traversal (按层次遍历)

  • 难度:Medium

  • 题意:
    给定一棵二叉树,按照 Z 字形遍历树的节点。

  • 思路:
    该道题其实和 102. Binary Tree Level Order Traversal 是一样的,都是按层次遍历,只是在输出时,按 z 字形输出即可。

  • 代码:

      class Solution:
          # @param {TreeNode} root
          # @return {integer[][]}
          def zigzagLevelOrder(self, root):
              values = self.levelOrder(root)
              for i in range(1,len(values),2):
                  values[i].reverse()
              return values
    

##107. Binary Tree Level Order Traversal II

  • 难度:Easy

  • 题意:
    给定一棵二叉树,要求自底向上按层次遍历。

  • 思路:
    还是使用队列辅助进行按层次遍历,思路上和普通按层次遍历没有什么区别。

  • 代码:

      class Solution:
          # @param {TreeNode} root
          # @return {integer[][]}
          def levelOrderBottom(self, root):
              if not root :return []
              levels = [[root]]
              values = [[root.val]]
              for level in levels:
                  newLevel = []
                  newValue = []
                  for node in level:
                      if node.left:
                          newLevel.append(node.left)
                          newValue.append(node.left.val)
                      if node.right:
                          newLevel.append(node.right)
                          newValue.append(node.right.val)
                  if newLevel:
                      levels.append(newLevel)
                      values.insert(0,newValue)
              return values
    

##104. Maximum Depth of Binary Tree (最大深度)

  • 难度:Medium

  • 题意:
    给定一棵二叉树,求其最大深度。

  • 思路:
    最简单的想法,一棵树的最大深度=max(左子树的最大深度,右子树的最大深度)+1。使用递归即可快速求解。

  • 代码:

      class Solution:
          # @param {TreeNode} root
          # @return {integer}
          def maxDepth(self, root):
              return 0 if not root else 1+max(self.maxDepth(root.left),self.maxDepth(root.right))
    

  • 思路 2:
    面试官肯定会问,还有非递归的解法吗?这里非递归的解法也非常简单,就是深度优先遍历(先序遍历)。深度优先遍历的非递归解法是借助栈来实现的,
    1. 跟节点入栈
    2. 循环将栈顶的左子入栈,直到无左子
    3. 弹出栈顶,将其右子入栈
    4. 循环 2 和 3
      因此可以看出,栈的深度就是树的深度。
      代码这里就不给出了。

##111. Minimum Depth of Binary Tree (最小深度)

  • 难度:Easy

  • 题意:
    求给定二叉树的最小深度

  • 思路:
    树最小深度 = min(左子最小深度,右子最小深度)+1,递归可求解。当然也可以用按层次遍历求解。

  • 代码:

      class Solution:
          # @param {TreeNode} root
          # @return {integer}
          def minDepth(self, root):
              if not root:return 0
              if not root.left and root.right:return 1+self.minDepth(root.right)
              if not root.right and root.left:return 1+self.minDepth(root.left)
              return 1+min(self.minDepth(root.left),self.minDepth(root.right))
    

##105. Construct Binary Tree from Preorder and Inorder Traversal (先序遍历、中序遍历)

  • 难度:Medium

  • 题意:
    给定一个先序遍历序列和中序遍历序列,要求还原这棵树。

  • 思路:
    先弄清楚先序遍历是根左右,中序遍历是左根右。因此,根据先序遍历可以将中序遍历划分为左右两段,分别代表左子树和右子树。如此递归可以求解。

  • 代码:

      class Solution:
          # @param {integer[]} preorder
          # @param {integer[]} inorder
          # @return {TreeNode},
          def buildTree(self, preorder, inorder):
              if not inorder:return None
              n = preorder[0]
              i = inorder.index(n)
              preorder.remove(n)
              root = TreeNode(n)
              root.left = self.buildTree(preorder,inorder[:i])
              root.right = self.buildTree(preorder,inorder[i+1:])
              return root
    

##106. Construct Binary Tree from Inorder and Postorder Traversal (中序遍历、后序遍历)

  • 难度:Medium

  • 题意:
    给定一棵树的中序和后序遍历的序列,要求还原这棵树。

  • 思路:
    中序遍历是左根右,后序遍历是左右根。因此可以根据后序遍历将中序遍历划分为左右两端,分别代表左子树和右子树,使用递归可以还原整棵树。

  • 代码:

      class Solution:
          # @param {integer[]} inorder
          # @param {integer[]} postorder
          # @return {TreeNode}
          def buildTree(self, inorder, postorder):
              if not inorder:return None
              n = postorder[-1]
              i = inorder.index(n)
              postorder.remove(n)
              root = TreeNode(n)
              root.right = self.buildTree(inorder[i+1:],postorder)
              root.left = self.buildTree(inorder[:i],postorder)
              return root
    

##144. Binary Tree Preorder Traversal(先序遍历)

  • 难度:Medium

  • 题意:
    给定一棵二叉树,返回其先序遍历序列。

  • 思路:
    先序遍历的顺序为:根左右。先序遍历和深度优先遍历类似,采用栈实现。若栈的操作顺序是,根出栈,根右子入栈,根左子入栈。则循环出栈的时候就为根左右的顺序了。

  • 代码:

      class Solution:
          # @param {TreeNode} root
          # @return {integer[]}
          def preorderTraversal(self, root):
              result=[]
              stack=[]
              if not root:return result
              stack.append(root)
              while stack:
                  head = stack.pop(-1)
                  result.append(head.val)
                  if head.right:
                      stack.append(head.right)
                  if head.left:
                      stack.append(head.left)
              return result
    

##145. Binary Tree Postorder Traversal (后序遍历)

  • 难度:Medium

  • 题意:
    给定一棵二叉树,返回其后序遍历序列。

  • 思路:
    后序遍历的顺序为:左右根。后序遍历也是借助栈来实现。后序遍历的栈操作顺序为,根入栈。栈顶的右子入栈,标记栈顶的右子已经入栈,栈顶的左子入栈,标记栈顶的左子入栈。当栈顶的左右子均以入过栈,栈顶弹出,否则,重复刚才的操作。

  • 代码:

      class Solution:
          # @param {TreeNode} root
          # @return {integer[]}
          def postorderTraversal(self, root):
              result=[]
              stack=[]
              if not root:return result
              stack.append(root)
              while stack:
                  top = stack[-1]
                  if not top.left and not top.right:
                      result.append(top.val)
                      stack.pop(-1)
                  else:
                      if top.right:
                          stack.append(top.right)
                          top.right=None
                      if top.left:
                          stack.append(top.left)
                          top.left=None
              return result
    

##108. Convert Sorted Array to Binary Search Tree (二叉搜索树)

  • 难度:Medium

  • 题意:
    给定一个正序数组,建立对应的二叉搜索树。

  • 思路:
    找到中位数作为根节点,左侧为左子树,右侧为右子树。递归建立即可。

  • 代码:

      class Solution:
          # @param {integer[]} nums
          # @return {TreeNode}
          def sortedArrayToBST(self, nums):
              if not nums: return None
              mid = len(nums)//2
              root = TreeNode(nums[mid])
              root.left = self.sortedArrayToBST(nums[:mid])
              root.right = self.sortedArrayToBST(nums[mid+1:])
              return root
    

##110. Balanced Binary Tree (平衡二叉树)

  • 难度:Easy

  • 题意:
    给定一棵二叉树,检查是否为平衡二叉树

  • 思路:
    一棵树为平衡二叉树的条件是,abs(左子树最大高度-右子树最大高度)<2,且左子树平衡且右子树平衡。树最大高度递=(左子树最大高度,右子树最大高度)+1。用递归的方法从定义出发可以解决。

  • 代码:

      class Solution:
          # @param {TreeNode} root
          # @return {boolean}
          def isBalanced(self, root):
              if not root:return True
              return abs(self.maxDepth(root.left)-self.maxDepth(root.right))<2 and self.isBalanced(root.left) and self.isBalanced(root.right)
          def maxDepth(self, root):
              if not root:return 0
              else:return 1+max(self.maxDepth(root.left),self.maxDepth(root.right))
    

##112. Path Sum(路径和)

  • 难度:Easy

  • 题意:
    给定二叉数组和数字 sum,检测是否有从根节点到叶子节点的路径使得路径上节点值的和为 sum

  • 思路:
    直接递归求解即可。

  • 代码:

      class Solution:
          # @param {TreeNode} root
          # @param {integer} sum
          # @return {boolean}
          def hasPathSum(self, root, sum):
              if not root :return False
              sum -= root.val
              if sum==0 and not root.left and not root.right:return True
              if sum!=0 and not root.left and not root.right:return False
              if root.left and not root.right:return self.hasPathSum(root.left,sum)
              if root.right and not root.left:return self.hasPathSum(root.right,sum)
              if root.right and root.left:return self.hasPathSum(root.left,sum) or self.hasPathSum(root.right,sum)
    

##113. Path Sum II(路径和)

  • 难度:Medium

  • 题意:
    给定二叉数组和数字 sum,检测是否有从根节点到叶子节点的路径使得路径上节点值的和为 sum,并返回所有满足要求的路径。

  • 思路:
    递归的同时把当前路径作为参数传入即可。

  • 代码:

      class Solution:
          # @param {TreeNode} root
          # @param {integer} sum
          # @return {integer[][]}
          def pathSum(self, root, sum):
              self.result = []
              self.reduce(root,sum,[])
              return self.result
    
          def reduce(self,root,sum,nodes0):
              nodes = nodes0[::]
              if not root:return
              else:
                  nodes.append(root.val)
                  sum-=root.val
                  if sum==0 and not root.left and not root.right:
                      self.result.append(nodes)
                  elif sum!=0 and not root.left and not root.right:
                      return
                  elif root.left and not root.right:
                      self.reduce(root.left,sum,nodes)
                  elif root.right and not root.left:
                      self.reduce(root.right,sum,nodes)
                  elif root.right and root.left:
                      self.reduce(root.left,sum,nodes)
                      self.reduce(root.right,sum,nodes)
    

##124. Binary Tree Maximum Path Sum (路径和)

  • 难度:Hard

  • 题意:
    给定一个二叉树,返回最大路径和。这里的路径指:任意连线两点之间的路径。

  • 思路:
    对任意节点,经过该节点的最大路径为【以左子为根向下遍历的最大路径】+ 该节点 +【以右子为根向下遍历的最大路径】。因此可以用递归解决。用一个全局变量记录最大路径,递归求解当前节点为根向下遍历的最大路径。

  • 代码:

      class Solution(object):
          def maxPathSum(self, root):
              """
              :type root: TreeNode
              :rtype: int
              """
              if not root:return 0
              self.maxv = -(2**31)
              self.maxSum(root)
              return self.maxv
    
          def maxSum(self,root):
              if not root:return 0
              v,lmax,rmax=root.val,0,0
              if root.left:
                  lmax=self.maxSum(root.left)
                  if lmax>0:
                      v+=lmax
              if root.right:
                  rmax=self.maxSum(root.right)
                  if rmax>0:
                      v+=rmax
              self.maxv=max(self.maxv,v)
              return max(root.val,root.val+lmax,root.val+rmax)
    

##129. Sum Root to Leaf Numbers(路径和)

  • 难度:Medium

  • 题意:
    给定一个二叉树只包含数字 0-9,每个从根到叶子节点的路径表示一个数字(根表示最高位)。求所以从根到叶子节点数字之和。

  • 思路:
    使用递归的方法,传递父路径代表数字 n,则当前路径为 n*10+root。递归到叶子节点的时候把数字求和即可。

  • 代码:

      class Solution:
          # @param {TreeNode} root
          # @return {integer}
          def sumNumbers(self, root):
              self.sum=0
              self.reduce(root,0)
              return self.sum
    
          def reduce(self,root,n):
              if not root:
                  self.sum+=n
              elif not root.left and not root.right:
                  n = 10*n+root.val
                  self.sum+=n
              else:
                  n = 10*n+root.val
                  if root.left:self.reduce(root.left,n)
                  if root.right:self.reduce(root.right,n)
    

##114. Flatten Binary Tree to Linked List (链表)

  • 难度:Medium

  • 题意:
    给定一棵二叉树,要求就定把树变为一个链表。

  • 思路:
    求当前节点的左子树的最右下角,并把当前节点右子树接到左子树最右下角,然后把左子树变为右子树。循环向右推进即可。

  • 代码:

      class Solution:
          # @param {TreeNode} root
          # @return {void} Do not return anything, modify root in-place instead.
          def flatten(self, root):
              if not root:return
              while root:
                  if root.left:
                      node = root.left
                      while node.right:
                          node = node.right
                      node.right = root.right
                      root.right = root.left
                      root.left = None
                  root = root.right
    

##116. Populating Next Right Pointers in Each Node (按层次遍历)

  • 难度:Medium

  • 题意:
    给定一棵二叉树,对于每个节点如果存在相邻(同层右侧)节点,则填充 next 指针。假定给定的是一棵完全二叉树。

  • 思路:
    按层次遍历,使用 tag 标记当前层有多少个节点。

  • 代码:

      class Solution:
          # @param root, a tree link node
          # @return nothing
          def connect(self, root):
              nodeList = [root]
              tag = 1
              i = 1
              while len(nodeList):
                  treeNode = nodeList.pop(0)
                  if  treeNode and treeNode.left:
                      nodeList.extend([treeNode.left,treeNode.right])
                  if i == tag:
                      i = 1
                      tag *= 2
                  else:
                      if len(nodeList):
                          treeNode.next = nodeList[0]
                      i += 1
    

##117. Populating Next Right Pointers in Each Node II (按层次遍历)

  • 难度:Hard

  • 题意:
    给定一棵二叉树,对于每个节点如果存在相邻(同层右侧)节点,则填充 next 指针。给定的树不一定是完全二叉树。

  • 思路:
    根据当前层已经串联起来的 next,来生成下一层的 next。即根据 next 横向遍历,判断子节点情况,来串联下一层。横向遍历前需要记下,下一层的最左边的节点。

  • 代码:

      class Solution(object):
          def connect(self, root):
              """
              :type root: TreeLinkNode
              :rtype: nothing
              """
              if not root:return
              node=root
              ##自上而下遍历
              while node:
                  down = None
                  ##横向遍历
                  while node:
                      ##记录下一层最左边节点
                      if not down:
                          if node.left: down = node.left
                          elif node.right: down = node.right
                      nex = node.next
                      ##跳过无子节点的节点
                      while nex:
                          if nex.left or nex.right:
                              break
                          nex=nex.next
                      ##串联下一层
                      if node.left and node.right:
                          node.left.next = node.right
    
                      if node.left and not node.right and nex:
                          if nex.left:
                              node.left.next=nex.left
                          else:
                              node.left.next=nex.right
                      if node.right and nex:
                          if nex.left:
                              node.right.next=nex.left
                          else:
                              node.right.next=nex.right
                      node=nex
                  node=down
    

##173. Binary Search Tree Iterator (二叉搜索树)

  • 难度:Medium

  • 题意:
    实现二叉搜索树的迭代器。next 方法返回下一最小数字。hasNext 方法返回是否存在下一最小数字。

  • 思路:
    二叉搜索其实就是中序遍历。因此借助栈来实现,在初始化时,就将跟节点的所有左子入栈。调用 next 方法,返回栈顶,并将栈顶右子树的所有左子入栈。若栈为空,则无 next。

  • 代码:

      class BSTIterator:
          # @param root, a binary search tree's root node
          def __init__(self, root):
              self.stack=[]
              while root:
                  self.stack.append(root)
                  root=root.left
    
          # @return a boolean, whether we have a next smallest number
          def hasNext(self):
              return len(self.stack)!=0
    
          # @return an integer, the next smallest number
          def next(self):
              if self.stack:
                  root=self.stack.pop(-1)
                  rig = root.right
                  while rig:
                      self.stack.append(rig)
                      rig=rig.left
                  return root.val
              return None
    

##199. Binary Tree Right Side View (按层次遍历)

  • 难度:Medium

  • 题意:
    给定一个二叉树,想象你从右侧看这棵树,自上而下返回你能看到的数字。

  • 思路:
    直接按层次遍历便可。

  • 代码:

      class Solution:
          # @param {TreeNode} root
          # @return {integer[]}
          def rightSideView(self, root):
              result=[]
              values = self.levelOrder(root)
              for row in values:
                  result.append(row[-1])
              return result
    
          def levelOrder(self, root):
              if not root :return []
              levels = [[root]]
              values = [[root.val]]
              for level in levels:
                  newLevel = []
                  newValue = []
                  for node in level:
                      if node.left:
                          newLevel.append(node.left)
                          newValue.append(node.left.val)
                      if node.right:
                          newLevel.append(node.right)
                          newValue.append(node.right.val)
                  if newLevel:
                      levels.append(newLevel)
                      values.append(newValue)
              return values
    

##222. Count Complete Tree Nodes (完全二叉树)

  • 难度:Medium

  • 题意:
    给定一个完全二叉树,返回节点个数。

  • 思路:
    对于完全二叉树,关键是找到最底层没有叶子的位置即可。若是满二叉树则可以直接算出节点个数。因此可以采用递归的方法查找节点缺失未知。若树最左深度=最右深度,则为满二叉树。否则递归求左子和右子数量。

  • 代码:

      class Solution:
          # @param {TreeNode} root
          # @return {integer}
          def countNodes(self, root):
              return self.counter(root)
    
          def leftDeep(self, root):
              i = 0
              node = root
              if not node:
                  return 0
              while node.left:
                  i += 1
                  node = node.left
              return i
    
          def rightDeep(self, root):
              i = 0
              node = root
              if not node:
                  return 0
              while node.right:
                  i += 1
                  node = node.right
              return i
    
          def counter(self, root):
              if not root:
                  return 0
              else:
                  l = self.leftDeep(root)+1
                  r = self.rightDeep(root)+1
                  if l == r:
                      return 2 ** l - 1
                  else:
                      return self.counter(root.left) + self.counter(root.right) + 1
    

##226. Invert Binary Tree

  • 难度:Easy

  • 题意:
    左右翻转一棵二叉树。

  • 思路:
    传说中 90% 的谷歌工程师没办法在白板完成的题目。思路很简单,递归翻转左右子树。

  • 代码:

      class Solution:
          # @param {TreeNode} root
          # @return {TreeNode}
          def invertTree(self, root):
              if not root:return root
              root.left,root.right=root.right,root.left
              self.invertTree(root.left)
              self.invertTree(root.right)
              return root
    

##230. Kth Smallest Element in a BST (二叉搜索树)

  • 难度:Medium

  • 题意:
    给定一个二叉搜索树,返回其第 k 小的元素。

  • 思路:
    借助栈实现二叉搜索树的遍历,弹出第 k 个为答案。

  • 代码:

      class Solution(object):
          def kthSmallest(self, root, k):
              """
              :type root: TreeNode
              :type k: int
              :rtype: int
              """
              stack=[]
              node = root
              while node:
                  stack.append(node)
                  node = node.left
              x=1
              while stack and x<=k:
                  node = stack.pop()
                  x+=1
                  right = node.right
                  while right:
                      stack.append(right)
                      right=right.left
              return node.val
    

##235. Lowest Common Ancestor of a Binary Search Tree (共同祖先)

  • 难度:Easy

  • 题意:
    给定一个二叉搜索树,找到给定两个节点的最近公共祖先。

  • 思路:
    使用递归的方法,若当前节点等于其中一个节点,则该节点必为公共节点。若两个数分布在该节点两侧,则该节点比为公共节点。若均在左侧,递归左子。若均在右侧,递归右子。

  • 代码:

      class Solution(object):
          def lowestCommonAncestor(self, root, p, q):
              """
              :type root: TreeNode
              :type p: TreeNode
              :type q: TreeNode
              :rtype: TreeNode
              """
    
              if root==p or root ==q:return root
              elif root.val > max(p.val,q.val):
                  return self.lowestCommonAncestor(root.left,p,q)
              elif root.val < min(p.val,q.val):
                  return self.lowestCommonAncestor(root.right,p,q)
              else:
                  return root
    

##236. Lowest Common Ancestor of a Binary Tree (共同祖先)

  • 难度:Medium

  • 题意:
    给定一个二叉树,找到给定两个节点的最近公共祖先。

  • 思路:
    该题和 235 的区别在于,不是二叉搜索树。因此无法通过数字的大小关系,判断数字在哪个子树中。但是整体思路还是不便。我们观察发现,其实在递归左子或右子的时候,其实同时也在查找两个给定的树。因此也可以判断两个数字在当前节点的哪一侧。而且更巧的是,若在同一侧,递归先找到的那个节点就是共同祖先。

  • 代码:

      class Solution(object):
          def lowestCommonAncestor(self, root, p, q):
              """
              :type root: TreeNode
              :type p: TreeNode
              :type q: TreeNode
              :rtype: TreeNode
              """
              if not root: return None
              if root==p or root==q:return root
              left = self.lowestCommonAncestor(root.left,p,q)
              right = self.lowestCommonAncestor(root.right,p,q)
              if left and right:return root
              return left if left else right
    

##257. Binary Tree Paths (路径)

  • 难度:Easy

  • 题意:
    给定一个二叉树,返回所有从根到叶子节点的路径。

  • 思路:
    递归进行 dfs,同时记录路径即可。

  • 代码:

      class Solution(object):
          def binaryTreePaths(self, root):
              """
              :type root: TreeNode
              :rtype: List[str]
              """
              self.result=[]
              self.dfs(root,[])
              return self.result
    
          def dfs(self,root,path0):
              path = path0[::]
              if not root :return
              path.append(str(root.val))
              if not root.left and not root.right:
                  self.result.append('->'.join(path))
              else:
                  if root.left:
                      self.dfs(root.left,path)
                  if root.right:
                      self.dfs(root.right,path)
    

##297. Serialize and Deserialize Binary Tree

  • 难度:Hard

  • 题意:
    要求设计二叉树的序列化和反序列化函数,要求序列化返回一个字符串。反序列化根据这个字符串能重新构造出这颗树

  • 思路:
    其实 leetcode 中对树的表示就是一种很好的序列化。因此序列化只需要借助队列,按层次遍历,若无子节点则用“#”代替。若该树为完全二叉树,则对第 i 个节点,其左右节点分别为 2i+1 和 2i+2。但是若为非完全二叉树,则对于之前出现的每个#,由于#没有左右子节点,会使当前节点的子节点提前 2*(当前节点之前#个数)

  • 代码:

      class Codec:
    
          def serialize(self, root):
              """Encodes a tree to a single string.
    
              :type root: TreeNode
              :rtype: str
              """
              if not root:return None
              q =[root]
              i,endIndex=0,1
              while i<endIndex:
                  if q[i]:
                      q.append(q[i].left)
                      q.append(q[i].right)
                      endIndex+=2;
                  i+=1
              res=[]
              for node in q:
                  if node:
                      res.append(str(node.val))
                  else:
                      res.append("#")
              return ','.join(res)
    
    
    
    
          def deserialize(self, data):
              """Decodes your encoded data to tree.
    
              :type data: str
              :rtype: TreeNode
              """
              if not data:return None
              values = data.split(',')
              nodes = [None]*len(values)
              count=0
              for i in range(len(values)):
                  if values[i] != '#':
                      nodes[i] = TreeNode(int(values[i]))
              for i in range(len(nodes)):
                  if not nodes[i]:
                      count+=1
                  else:
                      nodes[i].left=nodes[2*(i-count)+1]
                      nodes[i].right=nodes[2*(i-count)+2]
              return nodes[0]
    

  • LeetCode

    LeetCode(力扣)是一个全球极客挚爱的高质量技术成长平台,想要学习和提升专业能力从这里开始,充足技术干货等你来啃,轻松拿下 Dream Offer!

    209 引用 • 72 回帖

相关帖子

欢迎来到这里!

我们正在构建一个小众社区,大家在这里相互信任,以平等 • 自由 • 奔放的价值观进行分享交流。最终,希望大家能够找到与自己志同道合的伙伴,共同成长。

注册 关于
请输入回帖内容 ...
  • zonghua

    谢谢博主,这么多东西感觉我都可以记住了

  • 其他回帖
  • manyue

    不明觉厉~

  • zonghua

    @xcatliu 图的是不是高阶的了?

  • xcatliu

    这是所有的树的题目吗?

推荐标签 标签

  • Quicker

    Quicker 您的指尖工具箱!操作更少,收获更多!

    32 引用 • 130 回帖 • 2 关注
  • BND

    BND(Baidu Netdisk Downloader)是一款图形界面的百度网盘不限速下载器,支持 Windows、Linux 和 Mac,详细介绍请看这里

    107 引用 • 1281 回帖 • 27 关注
  • AngularJS

    AngularJS 诞生于 2009 年,由 Misko Hevery 等人创建,后为 Google 所收购。是一款优秀的前端 JS 框架,已经被用于 Google 的多款产品当中。AngularJS 有着诸多特性,最为核心的是:MVC、模块化、自动化双向数据绑定、语义化标签、依赖注入等。2.0 版本后已经改名为 Angular。

    12 引用 • 50 回帖 • 474 关注
  • QQ

    1999 年 2 月腾讯正式推出“腾讯 QQ”,在线用户由 1999 年的 2 人(马化腾和张志东)到现在已经发展到上亿用户了,在线人数超过一亿,是目前使用最广泛的聊天软件之一。

    45 引用 • 557 回帖 • 67 关注
  • Pipe

    Pipe 是一款小而美的开源博客平台。Pipe 有着非常活跃的社区,可将文章作为帖子推送到社区,来自社区的回帖将作为博客评论进行联动(具体细节请浏览 B3log 构思 - 分布式社区网络)。

    这是一种全新的网络社区体验,让热爱记录和分享的你不再感到孤单!

    132 引用 • 1114 回帖 • 124 关注
  • 锤子科技

    锤子科技(Smartisan)成立于 2012 年 5 月,是一家制造移动互联网终端设备的公司,公司的使命是用完美主义的工匠精神,打造用户体验一流的数码消费类产品(智能手机为主),改善人们的生活质量。

    4 引用 • 31 回帖 • 4 关注
  • 国际化

    i18n(其来源是英文单词 internationalization 的首末字符 i 和 n,18 为中间的字符数)是“国际化”的简称。对程序来说,国际化是指在不修改代码的情况下,能根据不同语言及地区显示相应的界面。

    8 引用 • 26 回帖
  • Eclipse

    Eclipse 是一个开放源代码的、基于 Java 的可扩展开发平台。就其本身而言,它只是一个框架和一组服务,用于通过插件组件构建开发环境。

    75 引用 • 258 回帖 • 617 关注
  • Logseq

    Logseq 是一个隐私优先、开源的知识库工具。

    Logseq is a joyful, open-source outliner that works on top of local plain-text Markdown and Org-mode files. Use it to write, organize and share your thoughts, keep your to-do list, and build your own digital garden.

    6 引用 • 63 回帖
  • OpenStack

    OpenStack 是一个云操作系统,通过数据中心可控制大型的计算、存储、网络等资源池。所有的管理通过前端界面管理员就可以完成,同样也可以通过 Web 接口让最终用户部署资源。

    10 引用 • 4 关注
  • 大数据

    大数据(big data)是指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。

    93 引用 • 113 回帖
  • Chrome

    Chrome 又称 Google 浏览器,是一个由谷歌公司开发的网页浏览器。该浏览器是基于其他开源软件所编写,包括 WebKit,目标是提升稳定性、速度和安全性,并创造出简单且有效率的使用者界面。

    62 引用 • 289 回帖 • 1 关注
  • 星云链

    星云链是一个开源公链,业内简单的将其称为区块链上的谷歌。其实它不仅仅是区块链搜索引擎,一个公链的所有功能,它基本都有,比如你可以用它来开发部署你的去中心化的 APP,你可以在上面编写智能合约,发送交易等等。3 分钟快速接入星云链 (NAS) 测试网

    3 引用 • 16 回帖
  • 前端

    前端技术一般分为前端设计和前端开发,前端设计可以理解为网站的视觉设计,前端开发则是网站的前台代码实现,包括 HTML、CSS 以及 JavaScript 等。

    247 引用 • 1348 回帖
  • 小薇

    小薇是一个用 Java 写的 QQ 聊天机器人 Web 服务,可以用于社群互动。

    由于 Smart QQ 从 2019 年 1 月 1 日起停止服务,所以该项目也已经停止维护了!

    34 引用 • 467 回帖 • 742 关注
  • Kotlin

    Kotlin 是一种在 Java 虚拟机上运行的静态类型编程语言,由 JetBrains 设计开发并开源。Kotlin 可以编译成 Java 字节码,也可以编译成 JavaScript,方便在没有 JVM 的设备上运行。在 Google I/O 2017 中,Google 宣布 Kotlin 成为 Android 官方开发语言。

    19 引用 • 33 回帖 • 63 关注
  • SEO

    发布对别人有帮助的原创内容是最好的 SEO 方式。

    35 引用 • 200 回帖 • 22 关注
  • 服务器

    服务器,也称伺服器,是提供计算服务的设备。由于服务器需要响应服务请求,并进行处理,因此一般来说服务器应具备承担服务并且保障服务的能力。

    125 引用 • 588 回帖
  • abitmean

    有点意思就行了

    29 关注
  • VirtualBox

    VirtualBox 是一款开源虚拟机软件,最早由德国 Innotek 公司开发,由 Sun Microsystems 公司出品的软件,使用 Qt 编写,在 Sun 被 Oracle 收购后正式更名成 Oracle VM VirtualBox。

    10 引用 • 2 回帖 • 6 关注
  • RabbitMQ

    RabbitMQ 是一个开源的 AMQP 实现,服务器端用 Erlang 语言编写,支持多种语言客户端,如:Python、Ruby、.NET、Java、C、PHP、ActionScript 等。用于在分布式系统中存储转发消息,在易用性、扩展性、高可用性等方面表现不俗。

    49 引用 • 60 回帖 • 362 关注
  • CloudFoundry

    Cloud Foundry 是 VMware 推出的业界第一个开源 PaaS 云平台,它支持多种框架、语言、运行时环境、云平台及应用服务,使开发人员能够在几秒钟内进行应用程序的部署和扩展,无需担心任何基础架构的问题。

    5 引用 • 18 回帖 • 167 关注
  • 支付宝

    支付宝是全球领先的独立第三方支付平台,致力于为广大用户提供安全快速的电子支付/网上支付/安全支付/手机支付体验,及转账收款/水电煤缴费/信用卡还款/AA 收款等生活服务应用。

    29 引用 • 347 回帖
  • etcd

    etcd 是一个分布式、高可用的 key-value 数据存储,专门用于在分布式系统中保存关键数据。

    5 引用 • 26 回帖 • 528 关注
  • flomo

    flomo 是新一代 「卡片笔记」 ,专注在碎片化时代,促进你的记录,帮你积累更多知识资产。

    5 引用 • 107 回帖
  • C

    C 语言是一门通用计算机编程语言,应用广泛。C 语言的设计目标是提供一种能以简易的方式编译、处理低级存储器、产生少量的机器码以及不需要任何运行环境支持便能运行的编程语言。

    85 引用 • 165 回帖 • 1 关注
  • Openfire

    Openfire 是开源的、基于可拓展通讯和表示协议 (XMPP)、采用 Java 编程语言开发的实时协作服务器。Openfire 的效率很高,单台服务器可支持上万并发用户。

    6 引用 • 7 回帖 • 94 关注