Spark mllib API- feature

本贴最后更新于 3132 天前,其中的信息可能已经斗转星移

spark 中大部分的向量转换采用训练(fit)-转化(transform)形式,因此会有对应的训练类和模型类。
该模块主要包括了,标准化、归一化、分词、特征选择

##pyspark.mllib.feature.Normalizer(p=2.0)
使用 Lp 范式对样本进行归一化。
若 1<=p<float('inf'),使用 sum(abs(vector)^p)^(1/p)范式。
若 p=float('inf'),使用 max(abs(vector))范式。

  • transform(vector)
    • 参数:vector - 需要正则化的 RDD
    • 返回: 正则化的向量 RDD

##pyspark.mllib.feature.StandardScaler(withMean=False, withStd=True)
使用训练集的列统计信息,通过修改均值和范围进行标准化

  • fit(dataset):StandardScalerModel
    计算均值和方差,并以模型保存,以便后续使用。相当于训练模型。

pyspark.mllib.feature.StandardScalerModel(java_model)

表示可以把特征转化为正态分布的 StandardScaler 模型

  • setWithMean(withMean)
    参数为 boolean,决定是否使用均值
  • setWithStd(withStd)
    参数为 boolean,决定是否使用 std
  • transform(vector)
    对特征进行标准变换

##pyspark.mllib.feature.HashingTF(numFeatures=1048576)
使用 hash 建立起 项-频度 映射。

  • numFeatures:向量维度
  • indexOf(term):返回指定项的索引
  • transform(document):将输入转化为项-频度向量

##pyspark.mllib.feature.IDF(minDocFreq=0)
IDF 为逆向文件频率,公式如下:

idf = log((m + 1) / (d(t) + 1))

其中 m 为文件总数,d(t)为出现项 t 的文件数。

  • 参数:minDocFreq
    通过 minDocFreq 参数,可以利用 IDF 过滤掉一些在文档中出现次数过少的词。若设置为 0,则返回 TF-IDF
  • 方法:fit(dataset)
    计算数据集的 IDF

##pyspark.mllib.feature.IDFModel(java_model)
IDF 模型

  • IDF():返回当前 IDF 向量
  • transform(x):将 TF 向量转化为 TF-IDF 向量

##pyspark.mllib.feature.Word2Vec

Word2Vec 创建了一个表示语料库中词语的的向量。算法首先从语料库中创建一个词汇表,然后创建对应到词汇表中单词的向量。在自然语言处理和机器学习算法中,该向量可以直接使用。

我们使用 skip-gram 模型实现,并且使用分层 softmax 方法来训练模型。

  • fit(data):使用 data 进行训练,计算向量
  • setLearningRate(learningRate):设置初始学习率
  • setMinCount(minCount):设置最少出现的 token 次数,默认 5
  • setNumIterations(numIterations):设置迭代次数,默认 1
  • setNumPartitions(numPartitions):设置分区个数,默认 1
  • setSeed(seed):设置随机种子
  • setVectorSize(vectorSize):设置向量维度,默认 100

##pyspark.mllib.feature.Word2VecModel(java_model)
Word2Vec fit 得到的模型

  • findSynonyms(word, num):找到指定 word 的 num 个同义词
  • getVectors():返回代表向量的单词表
  • transform(word):将单词转化为向量

pyspark.mllib.feature.ChiSqSelector(numTopFeatures)

创建一个卡方向量选择器,用于特征选择

  • 参数:numTopFeatures 保留的卡方较大的特征的数量。
  • fit(data):对 LabeledPoint 格式的 RDD 进行训练,返回 ChiSqSelectorModel,这个类将输入数据转化到降维的特征空间。

##pyspark.mllib.feature.ChiSqSelectorModel(java_model)
由 ChiSqSelector 训练得到的模型

  • transform(vector),对 RDD 进行转换,转化到降维的特征空间。

##pyspark.mllib.feature.ElementwiseProduct(scalingVector)
使用输入的 scalingVector 作为每一列的权值,对每一列进行扩展。

  • transform(vector):对向量进行 Hadamard 卷积。
  • Spark

    Spark 是 UC Berkeley AMP lab 所开源的类 Hadoop MapReduce 的通用并行框架。Spark 拥有 Hadoop MapReduce 所具有的优点;但不同于 MapReduce 的是 Job 中间输出结果可以保存在内存中,从而不再需要读写 HDFS,因此 Spark 能更好地适用于数据挖掘与机器学习等需要迭代的 MapReduce 的算法。

    74 引用 • 46 回帖 • 552 关注
  • 数据挖掘
    17 引用 • 32 回帖 • 3 关注
  • 归一化
    1 引用 • 1 回帖

相关帖子

欢迎来到这里!

我们正在构建一个小众社区,大家在这里相互信任,以平等 • 自由 • 奔放的价值观进行分享交流。最终,希望大家能够找到与自己志同道合的伙伴,共同成长。

注册 关于
请输入回帖内容 ...
  • zempty

    感动ing 好久没有看到这么优质的文章!请容我小小的激动一下

推荐标签 标签

  • Rust

    Rust 是一门赋予每个人构建可靠且高效软件能力的语言。Rust 由 Mozilla 开发,最早发布于 2014 年 9 月。

    58 引用 • 22 回帖
  • Spring

    Spring 是一个开源框架,是于 2003 年兴起的一个轻量级的 Java 开发框架,由 Rod Johnson 在其著作《Expert One-On-One J2EE Development and Design》中阐述的部分理念和原型衍生而来。它是为了解决企业应用开发的复杂性而创建的。框架的主要优势之一就是其分层架构,分层架构允许使用者选择使用哪一个组件,同时为 JavaEE 应用程序开发提供集成的框架。

    944 引用 • 1459 回帖 • 17 关注
  • JRebel

    JRebel 是一款 Java 虚拟机插件,它使得 Java 程序员能在不进行重部署的情况下,即时看到代码的改变对一个应用程序带来的影响。

    26 引用 • 78 回帖 • 664 关注
  • SendCloud

    SendCloud 由搜狐武汉研发中心孵化的项目,是致力于为开发者提供高质量的触发邮件服务的云端邮件发送平台,为开发者提供便利的 API 接口来调用服务,让邮件准确迅速到达用户收件箱并获得强大的追踪数据。

    2 引用 • 8 回帖 • 483 关注
  • 代码片段

    代码片段分为 CSS 与 JS 两种代码,添加在 [设置 - 外观 - 代码片段] 中,这些代码会在思源笔记加载时自动执行,用于改善笔记的样式或功能。

    用户在该标签下分享代码片段时需在帖子标题前添加 [css] [js] 用于区分代码片段类型。

    69 引用 • 372 回帖
  • Android

    Android 是一种以 Linux 为基础的开放源码操作系统,主要使用于便携设备。2005 年由 Google 收购注资,并拉拢多家制造商组成开放手机联盟开发改良,逐渐扩展到到平板电脑及其他领域上。

    334 引用 • 323 回帖 • 1 关注
  • 大疆创新

    深圳市大疆创新科技有限公司(DJI-Innovations,简称 DJI),成立于 2006 年,是全球领先的无人飞行器控制系统及无人机解决方案的研发和生产商,客户遍布全球 100 多个国家。通过持续的创新,大疆致力于为无人机工业、行业用户以及专业航拍应用提供性能最强、体验最佳的革命性智能飞控产品和解决方案。

    2 引用 • 14 回帖
  • RabbitMQ

    RabbitMQ 是一个开源的 AMQP 实现,服务器端用 Erlang 语言编写,支持多种语言客户端,如:Python、Ruby、.NET、Java、C、PHP、ActionScript 等。用于在分布式系统中存储转发消息,在易用性、扩展性、高可用性等方面表现不俗。

    49 引用 • 60 回帖 • 362 关注
  • Logseq

    Logseq 是一个隐私优先、开源的知识库工具。

    Logseq is a joyful, open-source outliner that works on top of local plain-text Markdown and Org-mode files. Use it to write, organize and share your thoughts, keep your to-do list, and build your own digital garden.

    6 引用 • 63 回帖
  • Elasticsearch

    Elasticsearch 是一个基于 Lucene 的搜索服务器。它提供了一个分布式多用户能力的全文搜索引擎,基于 RESTful 接口。Elasticsearch 是用 Java 开发的,并作为 Apache 许可条款下的开放源码发布,是当前流行的企业级搜索引擎。设计用于云计算中,能够达到实时搜索,稳定,可靠,快速,安装使用方便。

    117 引用 • 99 回帖 • 212 关注
  • 招聘

    哪里都缺人,哪里都不缺人。

    190 引用 • 1057 回帖
  • Maven

    Maven 是基于项目对象模型(POM)、通过一小段描述信息来管理项目的构建、报告和文档的软件项目管理工具。

    186 引用 • 318 回帖 • 302 关注
  • 百度

    百度(Nasdaq:BIDU)是全球最大的中文搜索引擎、最大的中文网站。2000 年 1 月由李彦宏创立于北京中关村,致力于向人们提供“简单,可依赖”的信息获取方式。“百度”二字源于中国宋朝词人辛弃疾的《青玉案·元夕》词句“众里寻他千百度”,象征着百度对中文信息检索技术的执著追求。

    63 引用 • 785 回帖 • 175 关注
  • uTools

    uTools 是一个极简、插件化、跨平台的现代桌面软件。通过自由选配丰富的插件,打造你得心应手的工具集合。

    6 引用 • 14 回帖 • 2 关注
  • NGINX

    NGINX 是一个高性能的 HTTP 和反向代理服务器,也是一个 IMAP/POP3/SMTP 代理服务器。 NGINX 是由 Igor Sysoev 为俄罗斯访问量第二的 Rambler.ru 站点开发的,第一个公开版本 0.1.0 发布于 2004 年 10 月 4 日。

    311 引用 • 546 回帖
  • Q&A

    提问之前请先看《提问的智慧》,好的问题比好的答案更有价值。

    8112 引用 • 37001 回帖 • 160 关注
  • SEO

    发布对别人有帮助的原创内容是最好的 SEO 方式。

    35 引用 • 200 回帖 • 22 关注
  • SVN

    SVN 是 Subversion 的简称,是一个开放源代码的版本控制系统,相较于 RCS、CVS,它采用了分支管理系统,它的设计目标就是取代 CVS。

    29 引用 • 98 回帖 • 680 关注
  • WiFiDog

    WiFiDog 是一套开源的无线热点认证管理工具,主要功能包括:位置相关的内容递送;用户认证和授权;集中式网络监控。

    1 引用 • 7 回帖 • 587 关注
  • danl
    132 关注
  • Gitea

    Gitea 是一个开源社区驱动的轻量级代码托管解决方案,后端采用 Go 编写,采用 MIT 许可证。

    4 引用 • 16 回帖 • 5 关注
  • 服务器

    服务器,也称伺服器,是提供计算服务的设备。由于服务器需要响应服务请求,并进行处理,因此一般来说服务器应具备承担服务并且保障服务的能力。

    125 引用 • 588 回帖
  • 小薇

    小薇是一个用 Java 写的 QQ 聊天机器人 Web 服务,可以用于社群互动。

    由于 Smart QQ 从 2019 年 1 月 1 日起停止服务,所以该项目也已经停止维护了!

    34 引用 • 467 回帖 • 742 关注
  • 以太坊

    以太坊(Ethereum)并不是一个机构,而是一款能够在区块链上实现智能合约、开源的底层系统。以太坊是一个平台和一种编程语言 Solidity,使开发人员能够建立和发布下一代去中心化应用。 以太坊可以用来编程、分散、担保和交易任何事物:投票、域名、金融交易所、众筹、公司管理、合同和知识产权等等。

    34 引用 • 367 回帖
  • SOHO

    为成为自由职业者在家办公而努力吧!

    7 引用 • 55 回帖 • 19 关注
  • Java

    Java 是一种可以撰写跨平台应用软件的面向对象的程序设计语言,是由 Sun Microsystems 公司于 1995 年 5 月推出的。Java 技术具有卓越的通用性、高效性、平台移植性和安全性。

    3187 引用 • 8213 回帖
  • 倾城之链
    23 引用 • 66 回帖 • 136 关注