开发一个完整的直播 app?看这里就够了(四)推流和传输

本贴最后更新于 3022 天前,其中的信息可能已经事过境迁

关于直播的技术文章不少,成体系的不多。我们将用七篇文章,更系统化地介绍当下大热的视频直播各环节的关键技术,帮助视频直播创业者们更全面、深入地了解视频直播技术,更好地技术选型。

在上一期中,我们介绍了讲解编码和封装。 本篇是《解密视频直播技术》系列之四:推流和传输。推流是直播的第一公里,直播的推流对这个直播链路影响非常大,如果推流的网络不稳定,无论我们如何做优化,观众的体验都会很糟糕。所以也是我们排查问题的第一步,如何系统地解决这类问题需要我们对相关理论有基础的认识。

本系列文章大纲如下:
(一)采集
(二)处理
(三)编码和封装
(四)推流和传输
(五)现代播放器原理
(六)延迟优化
(七)SDK 性能测试模型

##推送协议

下面就先介绍一下都有哪些推送协议,他们在直播领域的现状和优缺点。

  • RTMP

  • WebRTC

  • 基于 UDP 的私有协议

1. RTMP

RTMP 是 Real Time Messaging Protocol(实时消息传输协议)的首字母缩写。该协议基于 TCP,是一个协议族,包括 RTMP 基本协议及 RTMPT/RTMPS/RTMPE 等多种变种。RTMP 是一种设计用来进行实时数据通信的网络协议,主要用来在 Flash/AIR 平台和支持 RTMP 协议的流媒体/交互服务器之间进行音视频和数据通信。支持该协议的软件包括 Adobe Media Server/Ultrant Media Server/red5 等。

RTMP 是目前主流的流媒体传输协议,广泛用于直播领域,可以说市面上绝大多数的直播产品都采用了这个协议。

优点

CDN 支持良好,主流的 CDN 厂商都支持

协议简单,在各平台上实现容易

缺点

基于 TCP ,传输成本高,在弱网环境丢包率高的情况下问题显著

不支持浏览器推送

Adobe 私有协议,Adobe 已经不再更新

2. WebRTC

WebRTC,名称源自网页即时通信(英语:Web Real-Time Communication)的缩写,是一个支持网页浏览器进行实时语音对话或视频对话的 API。它于 2011 年 6 月 1 日开源并在 Google、Mozilla、Opera 支持下被纳入万维网联盟的 W3C 推荐标准。

目前主要应用于视频会议和连麦中,协议分层如下:

优点
W3C 标准,主流浏览器支持程度高

Google 在背后支撑,并在各平台有参考实现

底层基于 SRTP 和 UDP,弱网情况优化空间大

可以实现点对点通信,通信双方延时低

缺点

ICE,STUN,TURN 传统 CDN 没有类似的服务提供

3. 基于 UDP 的私有协议

有些直播应用会使用 UDP 做为底层协议开发自己的私有协议,因为 UDP 在弱网环境下的优势通过一些定制化的调优可以达到比较好的弱网优化效果,但同样因为是私有协议也势必有现实问题:

优点

更多空间进行定制化优化

缺点

开发成本高

CDN 不友好,需要自建 CDN 或者和 CDN 达成协议

独立作战,无法和社区一起演进

##传输网络

我们推送出去的流媒体需要传输到观众,整个链路就是传输网络,类比货运物流就是从出发地到目的地见的所有路程了,如果道路的容量不够,会引发堵车也就是网络拥塞,这时我们会改变路程也就是所谓的智能调度,但是传输网络会站在全局的角度进行调度,所以会比原子世界的调度有更好的效果,可以想象有一个上帝在天空中俯视出发地和目的地间的所有的路况信息,而且还是实时的,然后给出你一条明路,何等的神奇,但这些我们在 LiveNet 中都已经实现了。

这里先回顾一下传统的内容分发网络。

1. 为什么要有内容分发网络,内容分发网络的由来

互联网起源于美国军方的一个内部网络,Tim Berners-Lee 是互联网发明者之一,他很早就预见到在不久的将来网络拥塞将成为互联网发展的最大障碍,于是他提出了一个学术难题,要发明一种全新的、从根本上解决问题的方法来实现互联网内容的无拥塞分发,这项学术难题最终催生出一种革新性的互联网服务——CDN 。当时 Berners-Lee 博士隔壁是 Tom Leighton 教授的办公室,一位麻省理工学院应用数学教授,他被 Berners-Lee 的挑战激起了兴趣。Letghton 最终解决了这个难题并开始自己的商业计划,成立了 Akamai 公司,成为世界上第一家 CDN 公司。

2. 传统 CDN 的架构

上图是一个典型的 CDN 系统的三级部署示意图,节点是 CDN 系统中的最基本部署单元,分为三级部署,中心节点、区域节点和边缘节点,最上面一级是中心节点,中间一级是区域节点,边缘节点地理位置分散,为用户提供就近的内容访问服务。
下面介绍一下 CDN 节点的分类,主要分成两大类,骨干节点和 POP 节点,骨干节点又分为中心节点和区域节点。

  • 骨干节点

  • 中心节点

  • 区域节点

  • POP 节点

  • 边缘节点

逻辑上来讲,骨干节点主要负责内容分发和边缘节点未命中时进行回源,POP 节点主要负责提供给用户就近的内容访问服务。但如果 CDN 网络规模较大,边缘节点直接向中心节点回源会给中间层的核心设备造成的压力过大,在物理上引入区域节点,负责一个地理区域的管理,保存部分热点数据。

3. 直播传输网络有别于传统 CDN 的痛点

随着 Live 时代的到来,直播成为当前 CDN 厂商的又一个主要的战场,那么 Live 时代 CDN 需要支持什么样的服务呢?

流媒体协议的支持,包括 RTMP,HLS ,HTTP-FLV 等。

  • 首屏秒开,从用户点击到播放控制在秒级以内

  • 13 延迟控制,从推流端到播放端,延迟控制在 13 秒之间

全球全网智能路由,可以利用整个 CDN 网络内的所有节点为某一单一用户服务,不受地域限制。随着全球一体化进程不断推进,跨区域、跨国家、跨洲的直播正变为常态,很可能主播在欧美,而用户在亚洲。

天级别的节点按需增加,中国公司出海已成大势,CDN 需要更多的海外节点,如今比拼的更多的是海外节点可以快速部署,从提出节点增加需求到节点入网提供服务,需要达到一天之内,对 CDN 运维和规划提出非常高的要求。原有的月级别规划和入网满足不了先进的要求。

4. 传统 CDN 的链路路由

CDN 基于树状网络拓扑结构,每一层都有 GSLB (Global Server Load Balancing) 用于同一层内的多个 CDN 节点负载均衡,这样有什么好处呢?

前面提到的众多 CDN 的应用场景中,网页加速、视频加速、文件传输加速,都是同时依赖 GSLB 和 Cache 系统的,Cache 系统是整个 CDN 系统中的成本所在,设计树形结构可以最大化的节省 Cache 系统的资本投入。因为只有中心节点需要保持机会所有的 Cache 副本,向下逐级减少,到了边缘节点只需要少量的热点 Cache 就可以命中大部分 CDN 访问请求,这样极大的降低了 CDN 网络的成本,也符合当时 CDN 用户的需求,可谓双赢。

但是到了 Live 时代,直播业务是流式业务,很少涉及到 Cache 系统,基本都是播完就可以释放掉存储资源,即使因为政策原因有存储的需求也都是冷存储,对于存储的投入相对非常低廉,而且不要求存储在所有节点中,只要保证数据可回溯,可用即可。

我们看看树状网络拓扑,用户的链路选择数量是有限的,如下图,用户在某一个区域内可选择的链路数是:2 * 5 = 10

用户在某一区域内,则 GSLB (通常在边缘节点这一层是 Smart DNS)会把用户路由到该区域内的某个边缘节点,上一层又会路由到某个区域节点(这里的 GSLB 通常是内部的负载均衡器),最后又回溯到中心节点,中心节点会链接源站。

这里的假设是:

  • 用户能访问的最快节点一定是该区域内的边缘节点,如果该区域没有边缘节点则最快的一定是逻辑相邻的区域内的边缘节点。

  • 边缘节点能访问的最快节点一定是该区域内的区域节点,一定不会是其他区域的节点。

  • 区域节点到中心节点一定是最快的,这个链路的速度和带宽都是最优的。

但实际真的如此么?引入了如此多的假设真的正确么?

实际上就算理论上我们可以证明以上假设有效,但是节点规划和区域配置大都依赖于人的设计和规划,我们知道人多是不靠谱的,而且就算当时区域规划正确,谁能保证这些静态的网络规划不会因为铺设了一条光纤或者因为某些 IDC 压力过大而发生了改变呢?所以我们可以跳出树状网络拓扑结构的桎梏,探索新的适合直播加速的网络拓扑结构。

为了摆脱有限的链路路由线路限制,激活整理网络的能力,我们可以把上述的节点变成网状网络拓扑结构:

我们看到一旦我们把网络结构改成了网状结构,则用户的可选择链路变为:无向图的指定两点间的所有路径,学过图论的同学都知道,数量惊人。

系统可以通过智能路由选择任何一个最快的链路而不用依赖于系统部署时过时的人工规划,无论是某些链路间增加了光纤或者某个 IDC 压力过大都可以实时的反映到整理网络中,帮助用户实时推倒出最优链路。这时我们可以去掉前面的一些假设,通过机器而不是人类来时实时规划网络的链路路由,这种实时大规模的计算任务天生就不是人类的强项,我们应该交给更适合的物种。

5. CDN 的扩容

前面提到中国公司的出海已成大势,CDN 海外节点的需求越来越大,遇到这种情况需要 CDN 厂商在新的区域部署新的骨干网和边缘节点,需要做详细的网络规划。时代发生变化,原来 CDN 用户都是企业级用户,本身业务线的迭代周期较长,有较长时间的规划,留给 CDN 厂商的时间也比较多。而互联网公司讲究的是速度,双周迭代已成常态,这里面涉及到成本和响应速度的矛盾,如果提前部署节点可以更好的为这些互联网公司服务,但是有较高的成本压力,反之则无法响应这些快速发展的互联网公司。

理想情况是,用户提出需求,CDN 厂商内部评估,当天给出反馈,当天部署,客户当天就可以测试新区域的新节点。怎么解决?

答案是基于网状拓扑结构的对等网络,在网状拓扑结构中每个节点都是 Peer ,逻辑上每个节点提供的服务对等,不需要按区域设计复杂的网络拓扑结构,节点上线后不需要复杂的开局过程,直接上线注册节点信息,就可以对用户提供服务了,结合虚拟化技术前后时间理论上可以控制在一天之内。

6. 回归本质:LiveNet

我们知道最早的互联网就是网状拓扑结构,后来才慢慢加入了骨干网来解决各种各样的问题,我们是时候该回归本质,拥抱下一代 Live 分发网络:LiveNet 。总结前面的讨论,我们发现 Live 时代我们需要的内容分发网络是:

  • 对 Cache 的要求没有以前那么高

  • 对实时性的要求非常高

  • 对节点运维的要求高,要更智能,尽量减少人工干预

  • 对扩容这种运维事件响应度要求非常高

要做到如上几点,我们需要:

  • 去中心化,网状拓扑

  • 全球全网调度

  • 节点无状态,节点对等

  • 智能运维

以上这些就是 LiveNet 设计时候的斟酌,让运维更自动化,系统运行高度自治,依赖机器计算而不是人工判断,下面分别介绍一下。

1)去中心,网状拓扑
网状拓扑结构是设计的根本和基础,只有看清了我们对 Cache 需求的降低,网状拓扑结构才更有优势。

2)全球全网调度
基于全球一张网,不在受限于区域网络调度,将调度的范围从区域网络扩展到全球,全网内的节点都可以响应用户的请求,参与链路路由,不再先由人工假设选定一部分节点进行路由,去掉人工干预,让整个系统更智能。

3)节点无状态,节点对等
LiveNet 节点无状态和节点对等都方便了运维,去掉了区域概念后的全球一张网让整个拓扑结构变的异常复杂,如果各个节点间有先后依赖关系,势必让运维成为噩梦,需要专有的服务编排系统,同时也给扩容带来困难,需要运维人员设计复杂的扩容方案,需要预演多次才敢在复杂的网络拓扑中扩容。当时如果节点本身对等且无状态,则运维和扩容都变的容易很多。

但整个系统在运行过程中还是会一些状态和数据需要保持,比如某些 Live 内容需要落地回放的需求,这些通过久经考验的七牛云存储来存储。

4)智能运维
智能运维建立在以上的「网状拓扑结构的对等网络」的基础上会变的容易的多。可以方便的下线有问题的节点而不影响整个 LiveNet 网络,可以方便快速的上线新节点,提升系统容量。通过节点的数据分析可以更好的了解整个网络的整体状态。

下面列举部分 LiveNet 采用的智能运维方案,让内容分发网络再次升级,以符合 Live 时代的要求。

  • 监控节点健康状况,实时下线有问题的节点

  • Failover 机制,保证服务一直可用

  • 快速扩容

7.LiveNet VS P2P

最后我们和 P2P 网络做一个对比:

我们发现 P2P 方案,节点的可控性和链路的稳定性上还有很大提升空间,比较适合在实时性要求不高的场景使用、适合长尾需求,在 Live 的场景下面多是对实时性要求比较高的重度用户,无法忍受频繁的 FailOver 和节点质量参差不齐带来的网络抖动,但是如果是文件分发就比较适合用这种混合方案,可以有效降低 CDN 厂商成本,利用共享经济提高资源利用率。

这篇介绍了推送和传输网络部分,我们已经把流媒体送到了观众的终端中,下一步就是把它展现在屏幕上了,想了解这部分内容请继续关注我们的下一篇内容。

【没看过瘾?直接来上免费公开课】

为了让大家能够将技术理论快速应用到实践开发中,七牛云联合慕课网、StuQ 特别制作了一期课程,专门针对移动直播应用开发,供大家学习参考。

慕课网:
http://www.imooc.com/learn/707    
StuQ :
http://www.stuq.org/course/detail/1077

  • 程序员

    程序员是从事程序开发、程序维护的专业人员。

    575 引用 • 3533 回帖
  • 节点
    7 引用 • 13 回帖

相关帖子

欢迎来到这里!

我们正在构建一个小众社区,大家在这里相互信任,以平等 • 自由 • 奔放的价值观进行分享交流。最终,希望大家能够找到与自己志同道合的伙伴,共同成长。

注册 关于
请输入回帖内容 ...
  • 这样呀。一下就担心是各种不好的小广告了。

  • 其他回帖
  • 看上去好牛的样子。到最后发现是广告。。。

    1 回复
  • wulalala
    作者

    是七牛和慕课推出的免费课程,相信对直播技术感兴趣的童鞋肯定有帮助 ~

    1 回复

推荐标签 标签

  • SQLite

    SQLite 是一个进程内的库,实现了自给自足的、无服务器的、零配置的、事务性的 SQL 数据库引擎。SQLite 是全世界使用最为广泛的数据库引擎。

    5 引用 • 7 回帖 • 2 关注
  • GraphQL

    GraphQL 是一个用于 API 的查询语言,是一个使用基于类型系统来执行查询的服务端运行时(类型系统由你的数据定义)。GraphQL 并没有和任何特定数据库或者存储引擎绑定,而是依靠你现有的代码和数据支撑。

    4 引用 • 3 回帖 • 9 关注
  • Node.js

    Node.js 是一个基于 Chrome JavaScript 运行时建立的平台, 用于方便地搭建响应速度快、易于扩展的网络应用。Node.js 使用事件驱动, 非阻塞 I/O 模型而得以轻量和高效。

    139 引用 • 269 回帖 • 22 关注
  • Git

    Git 是 Linux Torvalds 为了帮助管理 Linux 内核开发而开发的一个开放源码的版本控制软件。

    209 引用 • 358 回帖
  • SendCloud

    SendCloud 由搜狐武汉研发中心孵化的项目,是致力于为开发者提供高质量的触发邮件服务的云端邮件发送平台,为开发者提供便利的 API 接口来调用服务,让邮件准确迅速到达用户收件箱并获得强大的追踪数据。

    2 引用 • 8 回帖 • 489 关注
  • Hibernate

    Hibernate 是一个开放源代码的对象关系映射框架,它对 JDBC 进行了非常轻量级的对象封装,使得 Java 程序员可以随心所欲的使用对象编程思维来操纵数据库。

    39 引用 • 103 回帖 • 714 关注
  • API

    应用程序编程接口(Application Programming Interface)是一些预先定义的函数,目的是提供应用程序与开发人员基于某软件或硬件得以访问一组例程的能力,而又无需访问源码,或理解内部工作机制的细节。

    77 引用 • 430 回帖
  • Solo

    Solo 是一款小而美的开源博客系统,专为程序员设计。Solo 有着非常活跃的社区,可将文章作为帖子推送到社区,来自社区的回帖将作为博客评论进行联动(具体细节请浏览 B3log 构思 - 分布式社区网络)。

    这是一种全新的网络社区体验,让热爱记录和分享的你不再感到孤单!

    1436 引用 • 10057 回帖 • 488 关注
  • 负能量

    上帝为你关上了一扇门,然后就去睡觉了....努力不一定能成功,但不努力一定很轻松 (° ー °〃)

    88 引用 • 1235 回帖 • 402 关注
  • Mobi.css

    Mobi.css is a lightweight, flexible CSS framework that focus on mobile.

    1 引用 • 6 回帖 • 750 关注
  • Redis

    Redis 是一个开源的使用 ANSI C 语言编写、支持网络、可基于内存亦可持久化的日志型、Key-Value 数据库,并提供多种语言的 API。从 2010 年 3 月 15 日起,Redis 的开发工作由 VMware 主持。从 2013 年 5 月开始,Redis 的开发由 Pivotal 赞助。

    286 引用 • 248 回帖 • 45 关注
  • 微信

    腾讯公司 2011 年 1 月 21 日推出的一款手机通讯软件。用户可以通过摇一摇、搜索号码、扫描二维码等添加好友和关注公众平台,同时可以将自己看到的精彩内容分享到微信朋友圈。

    132 引用 • 795 回帖
  • webpack

    webpack 是一个用于前端开发的模块加载器和打包工具,它能把各种资源,例如 JS、CSS(less/sass)、图片等都作为模块来使用和处理。

    41 引用 • 130 回帖 • 253 关注
  • 服务器

    服务器,也称伺服器,是提供计算服务的设备。由于服务器需要响应服务请求,并进行处理,因此一般来说服务器应具备承担服务并且保障服务的能力。

    125 引用 • 588 回帖 • 1 关注
  • 持续集成

    持续集成(Continuous Integration)是一种软件开发实践,即团队开发成员经常集成他们的工作,通过每个成员每天至少集成一次,也就意味着每天可能会发生多次集成。每次集成都通过自动化的构建(包括编译,发布,自动化测试)来验证,从而尽早地发现集成错误。

    15 引用 • 7 回帖 • 1 关注
  • 架构

    我们平时所说的“架构”主要是指软件架构,这是有关软件整体结构与组件的抽象描述,用于指导软件系统各个方面的设计。另外还有“业务架构”、“网络架构”、“硬件架构”等细分领域。

    143 引用 • 442 回帖
  • Dubbo

    Dubbo 是一个分布式服务框架,致力于提供高性能和透明化的 RPC 远程服务调用方案,是 [阿里巴巴] SOA 服务化治理方案的核心框架,每天为 2,000+ 个服务提供 3,000,000,000+ 次访问量支持,并被广泛应用于阿里巴巴集团的各成员站点。

    60 引用 • 82 回帖 • 605 关注
  • Vim

    Vim 是类 UNIX 系统文本编辑器 Vi 的加强版本,加入了更多特性来帮助编辑源代码。Vim 的部分增强功能包括文件比较(vimdiff)、语法高亮、全面的帮助系统、本地脚本(Vimscript)和便于选择的可视化模式。

    29 引用 • 66 回帖 • 1 关注
  • frp

    frp 是一个可用于内网穿透的高性能的反向代理应用,支持 TCP、UDP、 HTTP 和 HTTPS 协议。

    20 引用 • 7 回帖 • 2 关注
  • PostgreSQL

    PostgreSQL 是一款功能强大的企业级数据库系统,在 BSD 开源许可证下发布。

    22 引用 • 22 回帖 • 4 关注
  • 正则表达式

    正则表达式(Regular Expression)使用单个字符串来描述、匹配一系列遵循某个句法规则的字符串。

    31 引用 • 94 回帖
  • CloudFoundry

    Cloud Foundry 是 VMware 推出的业界第一个开源 PaaS 云平台,它支持多种框架、语言、运行时环境、云平台及应用服务,使开发人员能够在几秒钟内进行应用程序的部署和扩展,无需担心任何基础架构的问题。

    5 引用 • 18 回帖 • 176 关注
  • LaTeX

    LaTeX(音译“拉泰赫”)是一种基于 ΤΕΧ 的排版系统,由美国计算机学家莱斯利·兰伯特(Leslie Lamport)在 20 世纪 80 年代初期开发,利用这种格式,即使使用者没有排版和程序设计的知识也可以充分发挥由 TeX 所提供的强大功能,能在几天,甚至几小时内生成很多具有书籍质量的印刷品。对于生成复杂表格和数学公式,这一点表现得尤为突出。因此它非常适用于生成高印刷质量的科技和数学类文档。

    12 引用 • 54 回帖 • 46 关注
  • Python

    Python 是一种面向对象、直译式电脑编程语言,具有近二十年的发展历史,成熟且稳定。它包含了一组完善而且容易理解的标准库,能够轻松完成很多常见的任务。它的语法简捷和清晰,尽量使用无异义的英语单词,与其它大多数程序设计语言使用大括号不一样,它使用缩进来定义语句块。

    546 引用 • 672 回帖
  • Kafka

    Kafka 是一种高吞吐量的分布式发布订阅消息系统,它可以处理消费者规模的网站中的所有动作流数据。 这种动作(网页浏览,搜索和其他用户的行动)是现代系统中许多功能的基础。 这些数据通常是由于吞吐量的要求而通过处理日志和日志聚合来解决。

    36 引用 • 35 回帖 • 4 关注
  • 大疆创新

    深圳市大疆创新科技有限公司(DJI-Innovations,简称 DJI),成立于 2006 年,是全球领先的无人飞行器控制系统及无人机解决方案的研发和生产商,客户遍布全球 100 多个国家。通过持续的创新,大疆致力于为无人机工业、行业用户以及专业航拍应用提供性能最强、体验最佳的革命性智能飞控产品和解决方案。

    2 引用 • 14 回帖 • 2 关注
  • 安全

    安全永远都不是一个小问题。

    201 引用 • 816 回帖