熟悉算法 -- 随机森林

本贴最后更新于 2521 天前,其中的信息可能已经时过境迁

随机森林算法原理(一)

随机森林是用随机的方式建立一个森林,森林里面有很多的决策树组成,随机森林的每一棵决策树之间是没有关联的。在得到森林之后,当有一个新的输入样本进入的时候,就让森林中的每一棵决策树分别进行一下判断,看看这个样本应该属于哪一类,然后看看哪一类被选择最多,就预测这个样本为那一类。
在建立每一棵决策树的过程中,有两点需要注意采样与完全分裂。首先是两个随机采样的过程,random forest 对输入的数据要进行行、列的采样。对于行采样,采用有放回的方式,也就是在采样得到的样本集合中,可能有重复的样本。假设输入样本为 N 个,那么采样的样本也为 N 个。这样使得在训练的时候,每一棵树的输入样本都不是全部的样本,使得相对不容易出现 over-fitting。然后进行列采样,从 M 个 feature 中,选择 m 个(m << M)。之后就是对采样之后的数据使用完全分裂的方式建立出决策树,这样决策树的某一个叶子节点要么是无法继续分裂的,要么里面的所有样本的都是指向的同一个分类。由于之前的两个随机采样的过程保证了随机性,所以就算不剪枝,也不会出现 over-fitting,当层数较低的时候。

随机森林原理和步骤(二):

随机森林,指的是利用多棵树对样本进行训练并预测的一种分类器。简单来说,随机森林就是由多棵 CART(Classification And Regression Tree)构成的。对于每棵树,它们使用的训练集是从总的训练集中有放回采样出来的,这意味着,总的训练集中的有些样本可能多次出现在一棵树的训练集中,也可能从未出现在一棵树的训练集中。在训练每棵树的节点时,使用的特征是从所有特征中按照一定比例随机地无放回的抽取的,根据 Leo Breiman 的建议,假设总的特征数量为 M,这个比例可以是 sqrt(M),1/2sqrt(M),2sqrt(M)。
1: 随机森林的 训练过程 如下:
(1)给定训练集 S,测试集 T,特征维数 F。确定参数:使用到的 CART 的数量 t,每棵树的深度 d,每个节点使用到的特征数量 f,终止条件:节点上最少样本数 s,节点上最少的信息增益 m;
对于第 1-t 棵树 i:
(2)从 S 中有放回的抽取大小和 S 一样的训练集 S(i),随机的选择作为根节点的样本,从根节点开始训练
(3)如果当前节点上达到终止条件,则设置当前节点为叶子节点,如果是分类问题,该叶子节点的预测输出为当前节点样本集合中数量最多的那一类 c(j),概率 p 为 c(j)占当前样本集的比例;如果是回归问题,预测输出为当前节点样本集各个样本值的平均值。然后继续训练其他节点。如果当前节点没有达到终止条件,则从 F 维特征中无放回的随机选取 f 维特征。利用这 f 维特征,寻找分类效果最好的一维特征 k 及其阈值 th,当前节点上样本第 k 维特征小于 th 的样本被划分到左节点,其余的被划分到右节点。继续训练其他节点。有关分类效果的评判标准在后面会讲。
(4)重复(2)(3)直到所有节点都训练过了或者被标记为叶子节点。
(5)重复(2),(3),(4)直到所有 CART 都被训练过。

2:随机森林的 预测过程 如下:
对于第 1-t 棵树 i:
(1)从当前树的根节点开始,根据当前节点的阈值 th,判断是进入左节点(<th)还是进入右节点(>=th),直到到达,某个叶子节点,并输出预测值。
(2)重复执行(1)直到所有 t 棵树都输出了预测值。如果是分类问题,则输出为所有树中预测概率总和最大的那一个类,即对每个 c(j)的 p 进行累计;如果是回归问题,则输出为所有树的输出的平均值。
注:有关分类效果的评判标准,因为使用的是 CART,因此使用的也是 CART 的平板标准,和 C3.0,C4.5 都不相同。

对于分类问题(将某个样本划分到某一类),也就是离散变量问题,CART 使用 Gini值 作为评判标准。定义为 Gini=1-∑(P(i)*P(i)),P(i)为当前节点上数据集中第 i 类样本的比例。例如:分为 2 类,当前节点上有 100 个样本,属于第一类的样本有 70 个,属于第二类的样本有 30 个,则 Gini=1-0.7×07-0.3×03=0.42,可以看出,类别分布越平均,Gini值越大,类分布越不均匀,Gini值越小,在寻找最佳的分类特征和阈值时。
1:评判标准为:argmax(Gini-GiniLeft-GiniRight),即寻找最佳的特征 f 和阈值 th,使得当前节点的 Gini 值减去左子节点的 Gini 和右子节点的 Gini 值最大。
2:对于回归问题,相对更加简单,直接使用 argmax(Var-VarLeft-VarRight)作为评判标准,即当前节点训练集的方差 Var 减去减去左子节点的方差 VarLeft 和右子节点的方差 VarRight 值最大。

Random Forest与Bagging的区别 在于:Bagging 每次生成决策树的时候从全部的属性 Attributes 里面选择,而 Random Forest 是随机从全部 Attributes 的集合里面生成一个大小固定的子集,相对而言需要的计算量更小一些。 == TODO bagging

相关帖子

欢迎来到这里!

我们正在构建一个小众社区,大家在这里相互信任,以平等 • 自由 • 奔放的价值观进行分享交流。最终,希望大家能够找到与自己志同道合的伙伴,共同成长。

注册 关于
请输入回帖内容 ...

推荐标签 标签

  • WebComponents

    Web Components 是 W3C 定义的标准,它给了前端开发者扩展浏览器标签的能力,可以方便地定制可复用组件,更好的进行模块化开发,解放了前端开发者的生产力。

    1 引用
  • C++

    C++ 是在 C 语言的基础上开发的一种通用编程语言,应用广泛。C++ 支持多种编程范式,面向对象编程、泛型编程和过程化编程。

    107 引用 • 153 回帖
  • wolai

    我来 wolai:不仅仅是未来的云端笔记!

    2 引用 • 14 回帖
  • Openfire

    Openfire 是开源的、基于可拓展通讯和表示协议 (XMPP)、采用 Java 编程语言开发的实时协作服务器。Openfire 的效率很高,单台服务器可支持上万并发用户。

    6 引用 • 7 回帖 • 94 关注
  • RIP

    愿逝者安息!

    8 引用 • 92 回帖 • 351 关注
  • 京东

    京东是中国最大的自营式电商企业,2015 年第一季度在中国自营式 B2C 电商市场的占有率为 56.3%。2014 年 5 月,京东在美国纳斯达克证券交易所正式挂牌上市(股票代码:JD),是中国第一个成功赴美上市的大型综合型电商平台,与腾讯、百度等中国互联网巨头共同跻身全球前十大互联网公司排行榜。

    14 引用 • 102 回帖 • 376 关注
  • 机器学习

    机器学习(Machine Learning)是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。

    83 引用 • 37 回帖 • 1 关注
  • 面试

    面试造航母,上班拧螺丝。多面试,少加班。

    325 引用 • 1395 回帖
  • TGIF

    Thank God It's Friday! 感谢老天,总算到星期五啦!

    287 引用 • 4484 回帖 • 669 关注
  • V2EX

    V2EX 是创意工作者们的社区。这里目前汇聚了超过 400,000 名主要来自互联网行业、游戏行业和媒体行业的创意工作者。V2EX 希望能够成为创意工作者们的生活和事业的一部分。

    17 引用 • 236 回帖 • 327 关注
  • GAE

    Google App Engine(GAE)是 Google 管理的数据中心中用于 WEB 应用程序的开发和托管的平台。2008 年 4 月 发布第一个测试版本。目前支持 Python、Java 和 Go 开发部署。全球已有数十万的开发者在其上开发了众多的应用。

    14 引用 • 42 回帖 • 764 关注
  • 学习

    “梦想从学习开始,事业从实践起步” —— 习近平

    169 引用 • 506 回帖
  • SOHO

    为成为自由职业者在家办公而努力吧!

    7 引用 • 55 回帖 • 19 关注
  • JRebel

    JRebel 是一款 Java 虚拟机插件,它使得 Java 程序员能在不进行重部署的情况下,即时看到代码的改变对一个应用程序带来的影响。

    26 引用 • 78 回帖 • 664 关注
  • 酷鸟浏览器

    安全 · 稳定 · 快速
    为跨境从业人员提供专业的跨境浏览器

    3 引用 • 59 回帖 • 26 关注
  • 区块链

    区块链是分布式数据存储、点对点传输、共识机制、加密算法等计算机技术的新型应用模式。所谓共识机制是区块链系统中实现不同节点之间建立信任、获取权益的数学算法 。

    91 引用 • 751 回帖 • 2 关注
  • 职场

    找到自己的位置,萌新烦恼少。

    127 引用 • 1705 回帖 • 1 关注
  • Gitea

    Gitea 是一个开源社区驱动的轻量级代码托管解决方案,后端采用 Go 编写,采用 MIT 许可证。

    4 引用 • 16 回帖 • 5 关注
  • Unity

    Unity 是由 Unity Technologies 开发的一个让开发者可以轻松创建诸如 2D、3D 多平台的综合型游戏开发工具,是一个全面整合的专业游戏引擎。

    25 引用 • 7 回帖 • 173 关注
  • 前端

    前端技术一般分为前端设计和前端开发,前端设计可以理解为网站的视觉设计,前端开发则是网站的前台代码实现,包括 HTML、CSS 以及 JavaScript 等。

    247 引用 • 1348 回帖
  • JavaScript

    JavaScript 一种动态类型、弱类型、基于原型的直译式脚本语言,内置支持类型。它的解释器被称为 JavaScript 引擎,为浏览器的一部分,广泛用于客户端的脚本语言,最早是在 HTML 网页上使用,用来给 HTML 网页增加动态功能。

    729 引用 • 1327 回帖
  • SEO

    发布对别人有帮助的原创内容是最好的 SEO 方式。

    35 引用 • 200 回帖 • 22 关注
  • 房星科技

    房星网,我们不和没有钱的程序员谈理想,我们要让程序员又有理想又有钱。我们有雄厚的房地产行业线下资源,遍布昆明全城的 100 家门店、四千地产经纪人是我们坚实的后盾。

    6 引用 • 141 回帖 • 585 关注
  • 以太坊

    以太坊(Ethereum)并不是一个机构,而是一款能够在区块链上实现智能合约、开源的底层系统。以太坊是一个平台和一种编程语言 Solidity,使开发人员能够建立和发布下一代去中心化应用。 以太坊可以用来编程、分散、担保和交易任何事物:投票、域名、金融交易所、众筹、公司管理、合同和知识产权等等。

    34 引用 • 367 回帖
  • MySQL

    MySQL 是一个关系型数据库管理系统,由瑞典 MySQL AB 公司开发,目前属于 Oracle 公司。MySQL 是最流行的关系型数据库管理系统之一。

    690 引用 • 535 回帖
  • Sym

    Sym 是一款用 Java 实现的现代化社区(论坛/BBS/社交网络/博客)系统平台。

    下一代的社区系统,为未来而构建

    524 引用 • 4601 回帖 • 700 关注
  • SendCloud

    SendCloud 由搜狐武汉研发中心孵化的项目,是致力于为开发者提供高质量的触发邮件服务的云端邮件发送平台,为开发者提供便利的 API 接口来调用服务,让邮件准确迅速到达用户收件箱并获得强大的追踪数据。

    2 引用 • 8 回帖 • 483 关注