深度学习与支持向量机有什么联系?

本贴最后更新于 2978 天前,其中的信息可能已经事过境迁

90年代初,我和Vapnik一起在贝尔实验室共事,在此期间相继提出了一些后来有影响力的算法:卷积神经网络,支持向量机,切线距离等。1995年,AT&T从朗讯科技公司(LUCENT)独立出来,我则出任了AT&T实验室图像处理研究组的负责人,组内机器学习相关的研究员包括:Yoshua Bengio, Leon Bottou, and Patrick Haffner, and Vladimir Vapnik,访问学者和实习生主要包括:Bernhard Schölkopf, Jason Weston, Olivier Chapelle。

我和Vapnik经常一起深入讨论(深度)神经网络和核方法(kernel machines)的优缺点。简单来讲,我一直对学习特征表示很感兴趣,对核方法并不十分感冒,因为它对我想解决的问题没有直接的帮助。事实上,支持向量机是一个具有很好数学基础的分类方法,但它本质上也只不过是一个简单的两层方法:第一层可以看作是一些单元集合(一个支持向量就是一个单元),这些单元通过核函数能够度量输入向量和每个支持向量的相似度;第二层则把这些相似度做了简单的线性累加。支持向量机第一层的训练和最简单的无监督学习基本一致:利用支持向量来表示训练样本。一般来讲,通过调整核函数的平滑性(参数)能在线性分类和模板匹配之间做出平衡。从这个角度来讲,核函数只不过是一种模板匹配方法,我也因此在大约10年前就意识到了其局限性。另一方面,Vapnik 则认为支持向量机能方便地进行泛化控制。一个用“窄”核函数的支持向量机能很好地学习训练集,但它的泛化能力则要诉诸于核的宽度和对偶系数的稀疏度。Vapnik非常在意算法的误差界,因此他比较担忧神经网络乏善可陈的泛化控制方法(即使可以从VC维来解释其泛化界)。

SVM

而我则认为,是否能进行有效的泛化在一定程度上并不是最重要的,实际应用中我们往往更在乎通过有限的运算可以更高效地计算更复杂的函数。例如,在像素层次上运用核函数进行具有平移、尺度、旋转、不同光照以及混乱背景不变性的图像识别几乎是不可能的。但是深度学习(比如卷积神经网络)则能很容易地处理这些问题。

注:本文是翻译燕乐存博士的采访稿,原文如下:

GP: 3. You and I have met a while ago at a scientific advisory meeting of KXEN, whereVapnik‘s Statistical Learning Theory and SVM were a major topic. What is the relationship between Deep Learning and Support Vector Machines / Statistical Learning Theory?

Yann LeCun: Vapnik and I were in nearby office at Bell Labs in the early 1990s, in Larry Jackel’s Adaptive Systems Research Department. Convolutional nets, Support Vector Machines, Tangent Distance, and several other influential methods were invented within a few meters of each other, and within a few years of each other. When AT&T spun off Lucent In 1995, I became the head of that department which became the Image Processing Research Department at AT&T Labs – Research. Machine Learning members included Yoshua Bengio, Leon Bottou, and Patrick Haffner, and Vladimir Vapnik. Visitors and interns included Bernhard Schölkopf, Jason Weston, Olivier Chapelle, and others.

Vapnik and I often had lively discussions about the relative merits of (deep) neural nets and kernel machines. Basically, I have always been interested in solving the problem of learning features or learning representations. I had only a moderate interest in kernel methods because they did nothing to address this problem. Naturally, SVMs are wonderful as a generic classification method with beautiful math behind them. But in the end, they are nothing more than simple two-layer systems. The first layer can be seen as a set of units (one per support vector) that measure a kind of similarity between the input vector and each support vector using the kernel function. The second layer linearly combines these similarities.

It’s a two-layer system in which the first layer is trained with the simplest of all unsupervised learning method: simply store the training samples as prototypes in the units. Basically, varying the smoothness of the kernel function allows us to interpolate between two simple methods: linear classification, and template matching. I got in trouble about 10 years ago by saying that kernel methods were a form of glorified template matching. Vapnik, on the other hand, argued that SVMs had a very clear way of doing capacity control. An SVM with a “narrow” kernel function can always learn the training set perfectly, but its generalization error is controlled by the width of the kernel and the sparsity of the dual coefficients. Vapnik really believes in his bounds. He worried that neural nets didn’t have similarly good ways to do capacity control (although neural nets do have generalization bounds, since they have finite VC dimension).

My counter argument was that the ability to do capacity control was somewhat secondary to the ability to compute highly complex function with a limited amount of computation. Performing image recognition with invariance to shifts, scale, rotation, lighting conditions, and background clutter was impossible (or extremely inefficient) for a kernel machine operating at the pixel level. But it was quite easy for deep architectures such as convolutional nets.

  • 机器学习

    机器学习(Machine Learning)是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。

    83 引用 • 37 回帖
  • svm
    3 引用 • 1 回帖

相关帖子

欢迎来到这里!

我们正在构建一个小众社区,大家在这里相互信任,以平等 • 自由 • 奔放的价值观进行分享交流。最终,希望大家能够找到与自己志同道合的伙伴,共同成长。

注册 关于
请输入回帖内容 ...

推荐标签 标签

  • Maven

    Maven 是基于项目对象模型(POM)、通过一小段描述信息来管理项目的构建、报告和文档的软件项目管理工具。

    186 引用 • 318 回帖 • 306 关注
  • 运维

    互联网运维工作,以服务为中心,以稳定、安全、高效为三个基本点,确保公司的互联网业务能够 7×24 小时为用户提供高质量的服务。

    149 引用 • 257 回帖
  • ZeroNet

    ZeroNet 是一个基于比特币加密技术和 BT 网络技术的去中心化的、开放开源的网络和交流系统。

    1 引用 • 21 回帖 • 637 关注
  • 持续集成

    持续集成(Continuous Integration)是一种软件开发实践,即团队开发成员经常集成他们的工作,通过每个成员每天至少集成一次,也就意味着每天可能会发生多次集成。每次集成都通过自动化的构建(包括编译,发布,自动化测试)来验证,从而尽早地发现集成错误。

    15 引用 • 7 回帖
  • 阿里巴巴

    阿里巴巴网络技术有限公司(简称:阿里巴巴集团)是以曾担任英语教师的马云为首的 18 人,于 1999 年在中国杭州创立,他们相信互联网能够创造公平的竞争环境,让小企业通过创新与科技扩展业务,并在参与国内或全球市场竞争时处于更有利的位置。

    43 引用 • 221 回帖 • 118 关注
  • PWA

    PWA(Progressive Web App)是 Google 在 2015 年提出、2016 年 6 月开始推广的项目。它结合了一系列现代 Web 技术,在网页应用中实现和原生应用相近的用户体验。

    14 引用 • 69 回帖 • 153 关注
  • NGINX

    NGINX 是一个高性能的 HTTP 和反向代理服务器,也是一个 IMAP/POP3/SMTP 代理服务器。 NGINX 是由 Igor Sysoev 为俄罗斯访问量第二的 Rambler.ru 站点开发的,第一个公开版本 0.1.0 发布于 2004 年 10 月 4 日。

    311 引用 • 546 回帖
  • MongoDB

    MongoDB(来自于英文单词“Humongous”,中文含义为“庞大”)是一个基于分布式文件存储的数据库,由 C++ 语言编写。旨在为应用提供可扩展的高性能数据存储解决方案。MongoDB 是一个介于关系数据库和非关系数据库之间的产品,是非关系数据库当中功能最丰富,最像关系数据库的。它支持的数据结构非常松散,是类似 JSON 的 BSON 格式,因此可以存储比较复杂的数据类型。

    90 引用 • 59 回帖 • 3 关注
  • Sillot

    Insights(注意当前设置 master 为默认分支)

    汐洛彖夲肜矩阵(Sillot T☳Converbenk Matrix),致力于服务智慧新彖乄,具有彖乄驱动、极致优雅、开发者友好的特点。其中汐洛绞架(Sillot-Gibbet)基于自思源笔记(siyuan-note),前身是思源笔记汐洛版(更早是思源笔记汐洛分支),是智慧新录乄终端(多端融合,移动端优先)。

    主仓库地址:Hi-Windom/Sillot

    文档地址:sillot.db.sc.cn

    注意事项:

    1. ⚠️ 汐洛仍在早期开发阶段,尚不稳定
    2. ⚠️ 汐洛并非面向普通用户设计,使用前请了解风险
    3. ⚠️ 汐洛绞架基于思源笔记,开发者尽最大努力与思源笔记保持兼容,但无法实现 100% 兼容
    29 引用 • 25 回帖 • 83 关注
  • 游戏

    沉迷游戏伤身,强撸灰飞烟灭。

    176 引用 • 815 回帖
  • Caddy

    Caddy 是一款默认自动启用 HTTPS 的 HTTP/2 Web 服务器。

    12 引用 • 54 回帖 • 165 关注
  • jsDelivr

    jsDelivr 是一个开源的 CDN 服务,可为 npm 包、GitHub 仓库提供免费、快速并且可靠的全球 CDN 加速服务。

    5 引用 • 31 回帖 • 55 关注
  • Elasticsearch

    Elasticsearch 是一个基于 Lucene 的搜索服务器。它提供了一个分布式多用户能力的全文搜索引擎,基于 RESTful 接口。Elasticsearch 是用 Java 开发的,并作为 Apache 许可条款下的开放源码发布,是当前流行的企业级搜索引擎。设计用于云计算中,能够达到实时搜索,稳定,可靠,快速,安装使用方便。

    117 引用 • 99 回帖 • 210 关注
  • 小薇

    小薇是一个用 Java 写的 QQ 聊天机器人 Web 服务,可以用于社群互动。

    由于 Smart QQ 从 2019 年 1 月 1 日起停止服务,所以该项目也已经停止维护了!

    34 引用 • 467 回帖 • 744 关注
  • JavaScript

    JavaScript 一种动态类型、弱类型、基于原型的直译式脚本语言,内置支持类型。它的解释器被称为 JavaScript 引擎,为浏览器的一部分,广泛用于客户端的脚本语言,最早是在 HTML 网页上使用,用来给 HTML 网页增加动态功能。

    729 引用 • 1327 回帖 • 1 关注
  • PostgreSQL

    PostgreSQL 是一款功能强大的企业级数据库系统,在 BSD 开源许可证下发布。

    22 引用 • 22 回帖 • 2 关注
  • HBase

    HBase 是一个分布式的、面向列的开源数据库,该技术来源于 Fay Chang 所撰写的 Google 论文 “Bigtable:一个结构化数据的分布式存储系统”。就像 Bigtable 利用了 Google 文件系统所提供的分布式数据存储一样,HBase 在 Hadoop 之上提供了类似于 Bigtable 的能力。

    17 引用 • 6 回帖 • 74 关注
  • WordPress

    WordPress 是一个使用 PHP 语言开发的博客平台,用户可以在支持 PHP 和 MySQL 数据库的服务器上架设自己的博客。也可以把 WordPress 当作一个内容管理系统(CMS)来使用。WordPress 是一个免费的开源项目,在 GNU 通用公共许可证(GPLv2)下授权发布。

    66 引用 • 114 回帖 • 227 关注
  • 资讯

    资讯是用户因为及时地获得它并利用它而能够在相对短的时间内给自己带来价值的信息,资讯有时效性和地域性。

    55 引用 • 85 回帖
  • Tomcat

    Tomcat 最早是由 Sun Microsystems 开发的一个 Servlet 容器,在 1999 年被捐献给 ASF(Apache Software Foundation),隶属于 Jakarta 项目,现在已经独立为一个顶级项目。Tomcat 主要实现了 JavaEE 中的 Servlet、JSP 规范,同时也提供 HTTP 服务,是市场上非常流行的 Java Web 容器。

    162 引用 • 529 回帖 • 1 关注
  • RabbitMQ

    RabbitMQ 是一个开源的 AMQP 实现,服务器端用 Erlang 语言编写,支持多种语言客户端,如:Python、Ruby、.NET、Java、C、PHP、ActionScript 等。用于在分布式系统中存储转发消息,在易用性、扩展性、高可用性等方面表现不俗。

    49 引用 • 60 回帖 • 360 关注
  • Oracle

    Oracle(甲骨文)公司,全称甲骨文股份有限公司(甲骨文软件系统有限公司),是全球最大的企业级软件公司,总部位于美国加利福尼亚州的红木滩。1989 年正式进入中国市场。2013 年,甲骨文已超越 IBM,成为继 Microsoft 后全球第二大软件公司。

    105 引用 • 127 回帖 • 389 关注
  • WebClipper

    Web Clipper 是一款浏览器剪藏扩展,它可以帮助你把网页内容剪藏到本地。

    3 引用 • 9 回帖
  • RIP

    愿逝者安息!

    8 引用 • 92 回帖 • 351 关注
  • MySQL

    MySQL 是一个关系型数据库管理系统,由瑞典 MySQL AB 公司开发,目前属于 Oracle 公司。MySQL 是最流行的关系型数据库管理系统之一。

    685 引用 • 535 回帖
  • 安装

    你若安好,便是晴天。

    132 引用 • 1184 回帖
  • NetBeans

    NetBeans 是一个始于 1997 年的 Xelfi 计划,本身是捷克布拉格查理大学的数学及物理学院的学生计划。此计划延伸而成立了一家公司进而发展这个商用版本的 NetBeans IDE,直到 1999 年 Sun 买下此公司。Sun 于次年(2000 年)六月将 NetBeans IDE 开源,直到现在 NetBeans 的社群依然持续增长。

    78 引用 • 102 回帖 • 678 关注