深度学习与支持向量机有什么联系?

本贴最后更新于 3203 天前,其中的信息可能已经事过境迁

90年代初,我和Vapnik一起在贝尔实验室共事,在此期间相继提出了一些后来有影响力的算法:卷积神经网络,支持向量机,切线距离等。1995年,AT&T从朗讯科技公司(LUCENT)独立出来,我则出任了AT&T实验室图像处理研究组的负责人,组内机器学习相关的研究员包括:Yoshua Bengio, Leon Bottou, and Patrick Haffner, and Vladimir Vapnik,访问学者和实习生主要包括:Bernhard Schölkopf, Jason Weston, Olivier Chapelle。

我和Vapnik经常一起深入讨论(深度)神经网络和核方法(kernel machines)的优缺点。简单来讲,我一直对学习特征表示很感兴趣,对核方法并不十分感冒,因为它对我想解决的问题没有直接的帮助。事实上,支持向量机是一个具有很好数学基础的分类方法,但它本质上也只不过是一个简单的两层方法:第一层可以看作是一些单元集合(一个支持向量就是一个单元),这些单元通过核函数能够度量输入向量和每个支持向量的相似度;第二层则把这些相似度做了简单的线性累加。支持向量机第一层的训练和最简单的无监督学习基本一致:利用支持向量来表示训练样本。一般来讲,通过调整核函数的平滑性(参数)能在线性分类和模板匹配之间做出平衡。从这个角度来讲,核函数只不过是一种模板匹配方法,我也因此在大约10年前就意识到了其局限性。另一方面,Vapnik 则认为支持向量机能方便地进行泛化控制。一个用“窄”核函数的支持向量机能很好地学习训练集,但它的泛化能力则要诉诸于核的宽度和对偶系数的稀疏度。Vapnik非常在意算法的误差界,因此他比较担忧神经网络乏善可陈的泛化控制方法(即使可以从VC维来解释其泛化界)。

SVM

而我则认为,是否能进行有效的泛化在一定程度上并不是最重要的,实际应用中我们往往更在乎通过有限的运算可以更高效地计算更复杂的函数。例如,在像素层次上运用核函数进行具有平移、尺度、旋转、不同光照以及混乱背景不变性的图像识别几乎是不可能的。但是深度学习(比如卷积神经网络)则能很容易地处理这些问题。

注:本文是翻译燕乐存博士的采访稿,原文如下:

GP: 3. You and I have met a while ago at a scientific advisory meeting of KXEN, whereVapnik‘s Statistical Learning Theory and SVM were a major topic. What is the relationship between Deep Learning and Support Vector Machines / Statistical Learning Theory?

Yann LeCun: Vapnik and I were in nearby office at Bell Labs in the early 1990s, in Larry Jackel’s Adaptive Systems Research Department. Convolutional nets, Support Vector Machines, Tangent Distance, and several other influential methods were invented within a few meters of each other, and within a few years of each other. When AT&T spun off Lucent In 1995, I became the head of that department which became the Image Processing Research Department at AT&T Labs – Research. Machine Learning members included Yoshua Bengio, Leon Bottou, and Patrick Haffner, and Vladimir Vapnik. Visitors and interns included Bernhard Schölkopf, Jason Weston, Olivier Chapelle, and others.

Vapnik and I often had lively discussions about the relative merits of (deep) neural nets and kernel machines. Basically, I have always been interested in solving the problem of learning features or learning representations. I had only a moderate interest in kernel methods because they did nothing to address this problem. Naturally, SVMs are wonderful as a generic classification method with beautiful math behind them. But in the end, they are nothing more than simple two-layer systems. The first layer can be seen as a set of units (one per support vector) that measure a kind of similarity between the input vector and each support vector using the kernel function. The second layer linearly combines these similarities.

It’s a two-layer system in which the first layer is trained with the simplest of all unsupervised learning method: simply store the training samples as prototypes in the units. Basically, varying the smoothness of the kernel function allows us to interpolate between two simple methods: linear classification, and template matching. I got in trouble about 10 years ago by saying that kernel methods were a form of glorified template matching. Vapnik, on the other hand, argued that SVMs had a very clear way of doing capacity control. An SVM with a “narrow” kernel function can always learn the training set perfectly, but its generalization error is controlled by the width of the kernel and the sparsity of the dual coefficients. Vapnik really believes in his bounds. He worried that neural nets didn’t have similarly good ways to do capacity control (although neural nets do have generalization bounds, since they have finite VC dimension).

My counter argument was that the ability to do capacity control was somewhat secondary to the ability to compute highly complex function with a limited amount of computation. Performing image recognition with invariance to shifts, scale, rotation, lighting conditions, and background clutter was impossible (or extremely inefficient) for a kernel machine operating at the pixel level. But it was quite easy for deep architectures such as convolutional nets.

  • 机器学习

    机器学习(Machine Learning)是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。

    77 引用 • 37 回帖
  • svm
    3 引用 • 1 回帖

相关帖子

欢迎来到这里!

我们正在构建一个小众社区,大家在这里相互信任,以平等 • 自由 • 奔放的价值观进行分享交流。最终,希望大家能够找到与自己志同道合的伙伴,共同成长。

注册 关于
请输入回帖内容 ...

推荐标签 标签

  • 链书

    链书(Chainbook)是 B3log 开源社区提供的区块链纸质书交易平台,通过 B3T 实现共享激励与价值链。可将你的闲置书籍上架到链书,我们共同构建这个全新的交易平台,让闲置书籍继续发挥它的价值。

    链书社

    链书目前已经下线,也许以后还有计划重制上线。

    14 引用 • 257 回帖 • 2 关注
  • 外包

    有空闲时间是接外包好呢还是学习好呢?

    26 引用 • 233 回帖 • 3 关注
  • 印象笔记
    3 引用 • 16 回帖
  • Vim

    Vim 是类 UNIX 系统文本编辑器 Vi 的加强版本,加入了更多特性来帮助编辑源代码。Vim 的部分增强功能包括文件比较(vimdiff)、语法高亮、全面的帮助系统、本地脚本(Vimscript)和便于选择的可视化模式。

    29 引用 • 66 回帖
  • AngularJS

    AngularJS 诞生于 2009 年,由 Misko Hevery 等人创建,后为 Google 所收购。是一款优秀的前端 JS 框架,已经被用于 Google 的多款产品当中。AngularJS 有着诸多特性,最为核心的是:MVC、模块化、自动化双向数据绑定、语义化标签、依赖注入等。2.0 版本后已经改名为 Angular。

    12 引用 • 50 回帖 • 518 关注
  • GitLab

    GitLab 是利用 Ruby 一个开源的版本管理系统,实现一个自托管的 Git 项目仓库,可通过 Web 界面操作公开或私有项目。

    46 引用 • 72 回帖 • 2 关注
  • WiFiDog

    WiFiDog 是一套开源的无线热点认证管理工具,主要功能包括:位置相关的内容递送;用户认证和授权;集中式网络监控。

    1 引用 • 7 回帖 • 614 关注
  • 面试

    面试造航母,上班拧螺丝。多面试,少加班。

    326 引用 • 1395 回帖
  • Log4j

    Log4j 是 Apache 开源的一款使用广泛的 Java 日志组件。

    20 引用 • 18 回帖 • 34 关注
  • PHP

    PHP(Hypertext Preprocessor)是一种开源脚本语言。语法吸收了 C 语言、 Java 和 Perl 的特点,主要适用于 Web 开发领域,据说是世界上最好的编程语言。

    167 引用 • 408 回帖 • 489 关注
  • BookxNote

    BookxNote 是一款全新的电子书学习工具,助力您的学习与思考,让您的大脑更高效的记忆。

    笔记整理交给我,一心只读圣贤书。

    1 引用 • 1 回帖 • 1 关注
  • Ngui

    Ngui 是一个 GUI 的排版显示引擎和跨平台的 GUI 应用程序开发框架,基于
    Node.js / OpenGL。目标是在此基础上开发 GUI 应用程序可拥有开发 WEB 应用般简单与速度同时兼顾 Native 应用程序的性能与体验。

    7 引用 • 9 回帖 • 405 关注
  • Caddy

    Caddy 是一款默认自动启用 HTTPS 的 HTTP/2 Web 服务器。

    10 引用 • 54 回帖 • 181 关注
  • Mac

    Mac 是苹果公司自 1984 年起以“Macintosh”开始开发的个人消费型计算机,如:iMac、Mac mini、Macbook Air、Macbook Pro、Macbook、Mac Pro 等计算机。

    167 引用 • 597 回帖 • 1 关注
  • Sublime

    Sublime Text 是一款可以用来写代码、写文章的文本编辑器。支持代码高亮、自动完成,还支持通过插件进行扩展。

    10 引用 • 5 回帖 • 3 关注
  • 一些有用的避坑指南。

    69 引用 • 93 回帖
  • Ant-Design

    Ant Design 是服务于企业级产品的设计体系,基于确定和自然的设计价值观上的模块化解决方案,让设计者和开发者专注于更好的用户体验。

    17 引用 • 23 回帖 • 1 关注
  • 倾城之链
    23 引用 • 66 回帖 • 166 关注
  • TGIF

    Thank God It's Friday! 感谢老天,总算到星期五啦!

    291 引用 • 4495 回帖 • 662 关注
  • 互联网

    互联网(Internet),又称网际网络,或音译因特网、英特网。互联网始于 1969 年美国的阿帕网,是网络与网络之间所串连成的庞大网络,这些网络以一组通用的协议相连,形成逻辑上的单一巨大国际网络。

    98 引用 • 367 回帖
  • NetBeans

    NetBeans 是一个始于 1997 年的 Xelfi 计划,本身是捷克布拉格查理大学的数学及物理学院的学生计划。此计划延伸而成立了一家公司进而发展这个商用版本的 NetBeans IDE,直到 1999 年 Sun 买下此公司。Sun 于次年(2000 年)六月将 NetBeans IDE 开源,直到现在 NetBeans 的社群依然持续增长。

    78 引用 • 102 回帖 • 707 关注
  • Facebook

    Facebook 是一个联系朋友的社交工具。大家可以通过它和朋友、同事、同学以及周围的人保持互动交流,分享无限上传的图片,发布链接和视频,更可以增进对朋友的了解。

    4 引用 • 15 回帖 • 445 关注
  • JVM

    JVM(Java Virtual Machine)Java 虚拟机是一个微型操作系统,有自己的硬件构架体系,还有相应的指令系统。能够识别 Java 独特的 .class 文件(字节码),能够将这些文件中的信息读取出来,使得 Java 程序只需要生成 Java 虚拟机上的字节码后就能在不同操作系统平台上进行运行。

    180 引用 • 120 回帖 • 4 关注
  • BAE

    百度应用引擎(Baidu App Engine)提供了 PHP、Java、Python 的执行环境,以及云存储、消息服务、云数据库等全面的云服务。它可以让开发者实现自动地部署和管理应用,并且提供动态扩容和负载均衡的运行环境,让开发者不用考虑高成本的运维工作,只需专注于业务逻辑,大大降低了开发者学习和迁移的成本。

    19 引用 • 75 回帖 • 678 关注
  • 运维

    互联网运维工作,以服务为中心,以稳定、安全、高效为三个基本点,确保公司的互联网业务能够 7×24 小时为用户提供高质量的服务。

    151 引用 • 257 回帖 • 2 关注
  • 周末

    星期六到星期天晚,实行五天工作制后,指每周的最后两天。再过几年可能就是三天了。

    14 引用 • 297 回帖
  • 京东

    京东是中国最大的自营式电商企业,2015 年第一季度在中国自营式 B2C 电商市场的占有率为 56.3%。2014 年 5 月,京东在美国纳斯达克证券交易所正式挂牌上市(股票代码:JD),是中国第一个成功赴美上市的大型综合型电商平台,与腾讯、百度等中国互联网巨头共同跻身全球前十大互联网公司排行榜。

    14 引用 • 102 回帖 • 312 关注