SVM 简介

本贴最后更新于 2915 天前,其中的信息可能已经时移世改

SVM 简介

支持向量机(Support Vector Machine)是 Cortes 和 Vapnik 于 1995 年首先提出的,它在解决小样本、非线性及高维模式识别中表现出许多特有的优势,并能够推广应用到函数拟合等其他机器学习问题中[10]。
支持向量机方法是建立在统计学习理论的 VC 维理论和结构风险最小原理基础上的,根据有限的样本信息在模型的复杂性(即对特定训练样本的学习精度,Accuracy)和学习能力(即无错误地识别任意样本的能力)之间寻求最佳折衷,以期获得最好的推广能力[14](或称泛化能力)。

以上是经常被有关 SVM 的学术文献引用的介绍,有点八股,我来逐一分解并解释一下。

Vapnik 是统计机器学习的大牛,这想必都不用说,他出版的《Statistical Learning Theory》是一本完整阐述统计机器学习思想的名著。在该书中详细的论证了统计机器学习之所以区别于传统机器学习的本质,就在于统计机器学习能够精确的给出学习效果,能够解答需要的样本数等等一系列问题。与统计机器学习的精密思维相比,传统的机器学习基本上属于摸着石头过河,用传统的机器学习方法构造分类系统完全成了一种技巧,一个人做的结果可能很好,另一个人差不多的方法做出来却很差,缺乏指导和原则。

所谓 VC 维是对函数类的一种度量,可以简单的理解为问题的复杂程度,VC 维越高,一个问题就越复杂。正是因为 SVM 关注的是 VC 维,后面我们可以看到,SVM 解决问题的时候,和样本的维数是无关的(甚至样本是上万维的都可以,这使得 SVM 很适合用来解决文本分类的问题,当然,有这样的能力也因为引入了核函数)。

结构风险最小听上去文绉绉,其实说的也无非是下面这回事。

机器学习本质上就是一种对问题真实模型的逼近(我们选择一个我们认为比较好的近似模型,这个近似模型就叫做一个假设),但毫无疑问,真实模型一定是不知道的(如果知道了,我们干吗还要机器学习?直接用真实模型解决问题不就可以了?对吧,哈哈)既然真实模型不知道,那么我们选择的假设与问题真实解之间究竟有多大差距,我们就没法得知。比如说我们认为宇宙诞生于 150 亿年前的一场大爆炸,这个假设能够描述很多我们观察到的现象,但它与真实的宇宙模型之间还相差多少?谁也说不清,因为我们压根就不知道真实的宇宙模型到底是什么。

这个与问题真实解之间的误差,就叫做风险(更严格的说,误差的累积叫做风险)。我们选择了一个假设之后(更直观点说,我们得到了一个分类器以后),真实误差无从得知,但我们可以用某些可以掌握的量来逼近它。最直观的想法就是使用分类器在样本数据上的分类的结果与真实结果(因为样本是已经标注过的数据,是准确的数据)之间的差值来表示。这个差值叫做经验风险 Remp(w)。以前的机器学习方法都把经验风险最小化作为努力的目标,但后来发现很多分类函数能够在样本集上轻易达到 100% 的正确率,在真实分类时却一塌糊涂(即所谓的推广能力差,或泛化能力差)。此时的情况便是选择了一个足够复杂的分类函数(它的 VC 维很高),能够精确的记住每一个样本,但对样本之外的数据一律分类错误。回头看看经验风险最小化原则我们就会发现,此原则适用的大前提是经验风险要确实能够逼近真实风险才行(行话叫一致),但实际上能逼近么?答案是不能,因为样本数相对于现实世界要分类的文本数来说简直九牛一毛,经验风险最小化原则只在这占很小比例的样本上做到没有误差,当然不能保证在更大比例的真实文本上也没有误差。

统计学习因此而引入了泛化误差界的概念,就是指真实风险应该由两部分内容刻画,一是经验风险,代表了分类器在给定样本上的误差;二是置信风险,代表了我们在多大程度上可以信任分类器在未知文本上分类的结果。很显然,第二部分是没有办法精确计算的,因此只能给出一个估计的区间,也使得整个误差只能计算上界,而无法计算准确的值(所以叫做泛化误差界,而不叫泛化误差)。

置信风险与两个量有关,一是样本数量,显然给定的样本数量越大,我们的学习结果越有可能正确,此时置信风险越小;二是分类函数的 VC 维,显然 VC 维越大,推广能力越差,置信风险会变大。

泛化误差界的公式为:

R(w)≤Remp(w)+Ф(n/h)

公式中 R(w)就是真实风险,Remp(w)就是经验风险,Ф(n/h)就是置信风险。统计学习的目标从经验风险最小化变为了寻求经验风险与置信风险的和最小,即结构风险最小。

SVM 正是这样一种努力最小化结构风险的算法。

SVM 其他的特点就比较容易理解了。

小样本,并不是说样本的绝对数量少(实际上,对任何算法来说,更多的样本几乎总是能带来更好的效果),而是说与问题的复杂度比起来,SVM 算法要求的样本数是相对比较少的。

非线性,是指 SVM 擅长应付样本数据线性不可分的情况,主要通过松弛变量(也有人叫惩罚变量)和核函数技术来实现,这一部分是 SVM 的精髓,以后会详细讨论。多说一句,关于文本分类这个问题究竟是不是线性可分的,尚没有定论,因此不能简单的认为它是线性可分的而作简化处理,在水落石出之前,只好先当它是线性不可分的(反正线性可分也不过是线性不可分的一种特例而已,我们向来不怕方法过于通用)。

高维模式识别是指样本维数很高,例如文本的向量表示,如果没有经过另一系列文章(《文本分类入门》)中提到过的降维处理,出现几万维的情况很正常,其他算法基本就没有能力应付了,SVM 却可以,主要是因为 SVM 产生的分类器很简洁,用到的样本信息很少(仅仅用到那些称之为“支持向量”的样本,此为后话),使得即使样本维数很高,也不会给存储和计算带来大麻烦(相对照而言,kNN 算法在分类时就要用到所有样本,样本数巨大,每个样本维数再一高,这日子就没法过了……)。

下一节开始正式讨论 SVM。别嫌我说得太详细哦。

SVM 入门(二)线性分类器 Part 1

线性分类器(一定意义上,也可以叫做感知机) 是最简单也很有效的分类器形式.在一个线性分类器中,可以看到 SVM 形成的思路,并接触很多 SVM 的核心概念.

用一个二维空间里仅有两类样本的分类问题来举个小例子。如图所示

C1 和 C2 是要区分的两个类别,在二维平面中它们的样本如上图所示。中间的直线就是一个分类函数,它可以将两类样本完全分开。一般的,如果一个线性函数能够将样本完全正确的分开,就称这些数据是线性可分的,否则称为非线性可分的。

什么叫线性函数呢?在一维空间里就是一个点,在二维空间里就是一条直线,三维空间里就是一个平面,可以如此想象下去,如果不关注空间的维数,这种线性函数还有一个统一的名称——超平面(Hyper Plane)!

实际上,一个线性函数是一个实值函数(即函数的值是连续的实数),而我们的分类问题(例如这里的二元分类问题——回答一个样本属于还是不属于一个类别的问题)需要离散的输出值,例如用 1 表示某个样本属于类别 C1,而用 0 表示不属于(不属于 C1 也就意味着属于 C2),这时候只需要简单的在实值函数的基础上附加一个阈值即可,通过分类函数执行时得到的值大于还是小于这个阈值来确定类别归属。 例如我们有一个线性函数

g(x)=wx+b

我们可以取阈值为 0,这样当有一个样本 xi 需要判别的时候,我们就看 g(xi)的值。若 g(xi)>0,就判别为类别 C1,若 g(xi)<0,则判别为类别 C2(等于的时候我们就拒绝判断,呵呵)。此时也等价于给函数 g(x)附加一个符号函数 sgn(),即 f(x)=sgn [g(x)]是我们真正的判别函数。

关于 g(x)=wx+b 这个表达式要注意三点:一,式中的 x 不是二维坐标系中的横轴,而是样本的向量表示,例如一个样本点的坐标是(3,8),则 xT=(3,8) ,而不是 x=3(一般说向量都是说列向量,因此以行向量形式来表示时,就加上转置)。二,这个形式并不局限于二维的情况,在 n 维空间中仍然可以使用这个表达式,只是式中的 w 成为了 n 维向量(在二维的这个例子中,w 是二维向量,为了表示起来方便简洁,以下均不区别列向量和它的转置,聪明的读者一看便知);三,g(x)不是中间那条直线的表达式,中间那条直线的表达式是 g(x)=0,即 wx+b=0,我们也把这个函数叫做分类面。

实际上很容易看出来,中间那条分界线并不是唯一的,我们把它稍微旋转一下,只要不把两类数据分错,仍然可以达到上面说的效果,稍微平移一下,也可以。此时就牵涉到一个问题,对同一个问题存在多个分类函数的时候,哪一个函数更好呢?显然必须要先找一个指标来量化“好”的程度,通常使用的都是叫做“分类间隔”的指标。下一节我们就仔细说说分类间隔,也补一补相关的数学知识。

SVM 入门(三)线性分类器 Part 2

上回说到对于文本分类这样的不适定问题(有一个以上解的问题称为不适定问题),需要有一个指标来衡量解决方案(即我们通过训练建立的分类模型)的好坏,而分类间隔是一个比较好的指标。

在进行文本分类的时候,我们可以让计算机这样来看待我们提供给它的训练样本,每一个样本由一个向量(就是那些文本特征所组成的向量)和一个标记(标示出这个样本属于哪个类别)组成。如下:

Di=(xi,yi)

xi 就是文本向量(维数很高),yi 就是分类标记。

在二元的线性分类中,这个表示分类的标记只有两个值,1 和-1(用来表示属于还是不属于这个类)。有了这种表示法,我们就可以定义一个样本点到某个超平面的间隔:

δi=yi(wxi+b)

这个公式乍一看没什么神秘的,也说不出什么道理,只是个定义而已,但我们做做变换,就能看出一些有意思的东西。

首先注意到如果某个样本属于该类别的话,那么 wxi+b>0(记得么?这是因为我们所选的 g(x)=wx+b 就通过大于 0 还是小于 0 来判断分类),而 yi 也大于 0;若不属于该类别的话,那么 wxi+b<0,而 yi 也小于 0,这意味着 yi(wxi+b)总是大于 0 的,而且它的值就等于 |wxi+b|!(也就是 |g(xi)|)

现在把 w 和 b 进行一下归一化,即用 w/||w|| 和 b/||w|| 分别代替原来的 w 和 b,那么间隔就可以写成

这个公式是不是看上去有点眼熟?没错,这不就是解析几何中点 xi 到直线 g(x)=0 的距离公式嘛!(推广一下,是到超平面 g(x)=0 的距离, g(x)=0 就是上节中提到的分类超平面)

小 Tips:||w|| 是什么符号?||w|| 叫做向量 w 的范数,范数是对向量长度的一种度量。我们常说的向量长度其实指的是它的 2-范数,范数最一般的表示形式为 p-范数,可以写成如下表达式

向量w=(w1, w2, w3,…… wn)

它的 p-范数为

看看把 p 换成 2 的时候,不就是传统的向量长度么?当我们不指明 p 的时候,就像 ||w|| 这样使用时,就意味着我们不关心 p 的值,用几范数都可以;或者上文已经提到了 p 的值,为了叙述方便不再重复指明。

当用归一化的 w 和 b 代替原值之后的间隔有一个专门的名称,叫做几何间隔,几何间隔所表示的正是点到超平面的欧氏距离,我们下面就简称几何间隔为“距离”。以上是单个点到某个超平面的距离(就是间隔,后面不再区别这两个词)定义,同样可以定义一个点的集合(就是一组样本)到某个超平面的距离为此集合中离超平面最近的点的距离。下面这张图更加直观的展示出了几何间隔的现实含义:

H 是分类面,而 H1 和 H2 是平行于 H,且过离 H 最近的两类样本的直线,H1 与 H,H2 与 H 之间的距离就是几何间隔。

之所以如此关心几何间隔这个东西,是因为几何间隔与样本的误分次数间存在关系:

其中的 δ 是样本集合到分类面的间隔,R=max ||xi|| i=1,...,n,即 R 是所有样本中(xi 是以向量表示的第 i 个样本)向量长度最长的值(也就是说代表样本的分布有多么广)。先不必追究误分次数的具体定义和推导过程,只要记得这个误分次数一定程度上代表分类器的误差。而从上式可以看出,误分次数的上界由几何间隔决定!(当然,是样本已知的时候)

至此我们就明白为何要选择几何间隔来作为评价一个解优劣的指标了,原来几何间隔越大的解,它的误差上界越小。因此最大化几何间隔成了我们训练阶段的目标,而且,与二把刀作者所写的不同,最大化分类间隔并不是 SVM 的专利,而是早在线性分类时期就已有的思想。

相关帖子

回帖

欢迎来到这里!

我们正在构建一个小众社区,大家在这里相互信任,以平等 • 自由 • 奔放的价值观进行分享交流。最终,希望大家能够找到与自己志同道合的伙伴,共同成长。

注册 关于
请输入回帖内容 ...

推荐标签 标签

  • Hadoop

    Hadoop 是由 Apache 基金会所开发的一个分布式系统基础架构。用户可以在不了解分布式底层细节的情况下,开发分布式程序。充分利用集群的威力进行高速运算和存储。

    93 引用 • 122 回帖 • 619 关注
  • 学习

    “梦想从学习开始,事业从实践起步” —— 习近平

    172 引用 • 534 回帖
  • Wide

    Wide 是一款基于 Web 的 Go 语言 IDE。通过浏览器就可以进行 Go 开发,并有代码自动完成、查看表达式、编译反馈、Lint、实时结果输出等功能。

    欢迎访问我们运维的实例: https://wide.b3log.org

    30 引用 • 218 回帖 • 644 关注
  • Tomcat

    Tomcat 最早是由 Sun Microsystems 开发的一个 Servlet 容器,在 1999 年被捐献给 ASF(Apache Software Foundation),隶属于 Jakarta 项目,现在已经独立为一个顶级项目。Tomcat 主要实现了 JavaEE 中的 Servlet、JSP 规范,同时也提供 HTTP 服务,是市场上非常流行的 Java Web 容器。

    162 引用 • 529 回帖 • 7 关注
  • 钉钉

    钉钉,专为中国企业打造的免费沟通协同多端平台, 阿里巴巴出品。

    15 引用 • 67 回帖 • 271 关注
  • 禅道

    禅道是一款国产的开源项目管理软件,她的核心管理思想基于敏捷方法 scrum,内置了产品管理和项目管理,同时又根据国内研发现状补充了测试管理、计划管理、发布管理、文档管理、事务管理等功能,在一个软件中就可以将软件研发中的需求、任务、bug、用例、计划、发布等要素有序的跟踪管理起来,完整地覆盖了项目管理的核心流程。

    10 引用 • 15 回帖 • 6 关注
  • WebComponents

    Web Components 是 W3C 定义的标准,它给了前端开发者扩展浏览器标签的能力,可以方便地定制可复用组件,更好的进行模块化开发,解放了前端开发者的生产力。

    1 引用 • 9 关注
  • CSDN

    CSDN (Chinese Software Developer Network) 创立于 1999 年,是中国的 IT 社区和服务平台,为中国的软件开发者和 IT 从业者提供知识传播、职业发展、软件开发等全生命周期服务,满足他们在职业发展中学习及共享知识和信息、建立职业发展社交圈、通过软件开发实现技术商业化等刚性需求。

    14 引用 • 155 回帖
  • WiFiDog

    WiFiDog 是一套开源的无线热点认证管理工具,主要功能包括:位置相关的内容递送;用户认证和授权;集中式网络监控。

    1 引用 • 7 回帖 • 614 关注
  • InfluxDB

    InfluxDB 是一个开源的没有外部依赖的时间序列数据库。适用于记录度量,事件及实时分析。

    2 引用 • 99 关注
  • GAE

    Google App Engine(GAE)是 Google 管理的数据中心中用于 WEB 应用程序的开发和托管的平台。2008 年 4 月 发布第一个测试版本。目前支持 Python、Java 和 Go 开发部署。全球已有数十万的开发者在其上开发了众多的应用。

    14 引用 • 42 回帖 • 820 关注
  • Typecho

    Typecho 是一款博客程序,它在 GPLv2 许可证下发行,基于 PHP 构建,可以运行在各种平台上,支持多种数据库(MySQL、PostgreSQL、SQLite)。

    12 引用 • 67 回帖 • 444 关注
  • SEO

    发布对别人有帮助的原创内容是最好的 SEO 方式。

    36 引用 • 200 回帖 • 32 关注
  • Sublime

    Sublime Text 是一款可以用来写代码、写文章的文本编辑器。支持代码高亮、自动完成,还支持通过插件进行扩展。

    10 引用 • 5 回帖 • 2 关注
  • Firefox

    Mozilla Firefox 中文俗称“火狐”(正式缩写为 Fx 或 fx,非正式缩写为 FF),是一个开源的网页浏览器,使用 Gecko 排版引擎,支持多种操作系统,如 Windows、OSX 及 Linux 等。

    7 引用 • 30 回帖 • 381 关注
  • flomo

    flomo 是新一代 「卡片笔记」 ,专注在碎片化时代,促进你的记录,帮你积累更多知识资产。

    6 引用 • 143 回帖
  • Anytype
    3 引用 • 31 回帖 • 27 关注
  • 微信

    腾讯公司 2011 年 1 月 21 日推出的一款手机通讯软件。用户可以通过摇一摇、搜索号码、扫描二维码等添加好友和关注公众平台,同时可以将自己看到的精彩内容分享到微信朋友圈。

    133 引用 • 796 回帖
  • Kafka

    Kafka 是一种高吞吐量的分布式发布订阅消息系统,它可以处理消费者规模的网站中的所有动作流数据。 这种动作(网页浏览,搜索和其他用户的行动)是现代系统中许多功能的基础。 这些数据通常是由于吞吐量的要求而通过处理日志和日志聚合来解决。

    36 引用 • 35 回帖 • 1 关注
  • 印象笔记
    3 引用 • 16 回帖
  • Follow
    4 引用 • 12 回帖 • 1 关注
  • DNSPod

    DNSPod 建立于 2006 年 3 月份,是一款免费智能 DNS 产品。 DNSPod 可以为同时有电信、网通、教育网服务器的网站提供智能的解析,让电信用户访问电信的服务器,网通的用户访问网通的服务器,教育网的用户访问教育网的服务器,达到互联互通的效果。

    6 引用 • 26 回帖 • 537 关注
  • H2

    H2 是一个开源的嵌入式数据库引擎,采用 Java 语言编写,不受平台的限制,同时 H2 提供了一个十分方便的 web 控制台用于操作和管理数据库内容。H2 还提供兼容模式,可以兼容一些主流的数据库,因此采用 H2 作为开发期的数据库非常方便。

    11 引用 • 54 回帖 • 671 关注
  • Sphinx

    Sphinx 是一个基于 SQL 的全文检索引擎,可以结合 MySQL、PostgreSQL 做全文搜索,它可以提供比数据库本身更专业的搜索功能,使得应用程序更容易实现专业化的全文检索。

    1 引用 • 229 关注
  • Solo

    Solo 是一款小而美的开源博客系统,专为程序员设计。Solo 有着非常活跃的社区,可将文章作为帖子推送到社区,来自社区的回帖将作为博客评论进行联动(具体细节请浏览 B3log 构思 - 分布式社区网络)。

    这是一种全新的网络社区体验,让热爱记录和分享的你不再感到孤单!

    1443 引用 • 10082 回帖 • 497 关注
  • gRpc
    11 引用 • 9 回帖 • 98 关注
  • Linux

    Linux 是一套免费使用和自由传播的类 Unix 操作系统,是一个基于 POSIX 和 Unix 的多用户、多任务、支持多线程和多 CPU 的操作系统。它能运行主要的 Unix 工具软件、应用程序和网络协议,并支持 32 位和 64 位硬件。Linux 继承了 Unix 以网络为核心的设计思想,是一个性能稳定的多用户网络操作系统。

    954 引用 • 944 回帖