【转】 JAVA CAS 原理深度分析

本贴最后更新于 2738 天前,其中的信息可能已经时移世异

看了一堆文章,终于把 Java CAS 的原理深入分析清楚了。

感谢 GOOGLE 强大的搜索,借此挖苦下百度,依靠百度什么都学习不到!

参考文档:

http://www.blogjava.NET/xylz/archive/2010/07/04/325206.html

http://blog.hesey.Net/2011/09/resolve-aba-by-atomicstampedreference.html

http://www.searchsoa.com.cn/showcontent_69238.htm

聊聊并发(五)原子操作的实现原理 | 并发编程网 – ifeve.com

http://www.infoq.com/cn/articles/Java-memory-model-5

java.util.concurrent 包完全建立在 CAS 之上的,没有 CAS 就不会有此包。可见 CAS 的重要性。

CAS

CAS:Compare and Swap, 翻译成比较并交换。

java.util.concurrent 包中借助 CAS 实现了区别于 synchronouse 同步锁的一种乐观锁。

本文先从 CAS 的应用说起,再深入原理解析。

CAS 应用

CAS 有 3 个操作数,内存值 V,旧的预期值 A,要修改的新值 B。当且仅当预期值 A 和内存值 V 相同时,将内存值 V 修改为 B,否则什么都不做。

非阻塞算法 (nonblocking algorithms)

一个线程的失败或者挂起不应该影响其他线程的失败或挂起的算法。

现代的 CPU 提供了特殊的指令,可以自动更新共享数据,而且能够检测到其他线程的干扰,而 compareAndSet() 就用这些代替了锁定。

拿出 AtomicInteger 来研究在没有锁的情况下是如何做到数据正确性的。

private volatile int value;

首先毫无以为,在没有锁的机制下可能需要借助 volatile 原语,保证线程间的数据是可见的(共享的)。

这样才获取变量的值的时候才能直接读取。

public final int get() {
return value;
}

然后来看看 ++i 是怎么做到的。

public final int incrementAndGet() {
for (;;) {
int current = get();
int next = current + 1;
if (compareAndSet(current, next))
return next;
}
}

在这里采用了 CAS 操作,每次从内存中读取数据然后将此数据和 +1 后的结果进行 CAS 操作,如果成功就返回结果,否则重试直到成功为止。

而 compareAndSet 利用 JNI 来完成 CPU 指令的操作。

public final boolean compareAndSet(int expect, int update) {
return unsafe.compareAndSwapInt(this, valueOffset, expect, update);
}

整体的过程就是这样子的,利用 CPU 的 CAS 指令,同时借助 JNI 来完成 Java 的非阻塞算法。其它原子操作都是利用类似的特性完成的。

其中

unsafe.compareAndSwapInt(this, valueOffset, expect, update);

类似:

if (this == expect) {

this = update

return true;

} else {

return false;

}

那么问题就来了,成功过程中需要 2 个步骤:比较 this == expect,替换 this = update,compareAndSwapInt 如何这两个步骤的原子性呢? 参考 CAS 的原理。

CAS 原理

CAS 通过调用 JNI 的代码实现的。JNI:Java Native Interface 为 JAVA 本地调用,允许 java 调用其他语言。

而 compareAndSwapInt 就是借助 C 来调用 CPU 底层指令实现的。

下面从分析比较常用的 CPU(intel x86)来解释 CAS 的实现原理。

下面是 sun.misc.Unsafe 类的 compareAndSwapInt()方法的源代码:

public final native boolean compareAndSwapInt(Object o, long offset,
int expected,
int x);

可以看到这是个本地方法调用。这个本地方法在 openjdk 中依次调用的 c++ 代码为:unsafe.cpp,atomic.cpp 和 atomic_windows_x86.inline.hpp。这个本地方法的最终实现在 openjdk 的如下位置:openjdk-7-fcs-src-b147-27_jun_2011\openjdk\hotspot\src\os_cpu\windows_x86\vm\ atomic_windows_x86.inline.hpp(对应于 windows 操作系统,X86 处理器)。下面是对应于 intel x86 处理器的源代码的片段:

// Adding a lock prefix to an instruction on MP machine
// VC++ doesn't like the lock prefix to be on a single line
// so we can't insert a label after the lock prefix.
// By emitting a lock prefix, we can define a label after it.
#define LOCK_IF_MP(mp) __asm cmp mp, 0
__asm je L0
__asm _emit 0xF0
__asm L0:

inline jint Atomic::cmpxchg (jint exchange_value, volatile jint* dest, jint compare_value) {
// alternative for InterlockedCompareExchange
int mp = os::is_MP();
__asm {
mov edx, dest
mov ecx, exchange_value
mov eax, compare_value
LOCK_IF_MP(mp)
cmpxchg dword ptr [edx], ecx
}
}

如上面源代码所示,程序会根据当前处理器的类型来决定是否为 cmpxchg 指令添加 lock 前缀。如果程序是在多处理器上运行,就为 cmpxchg 指令加上 lock 前缀(lock cmpxchg)。反之,如果程序是在单处理器上运行,就省略 lock 前缀(单处理器自身会维护单处理器内的顺序一致性,不需要 lock 前缀提供的内存屏障效果)。

intel 的手册对 lock 前缀的说明如下:

  1. 确保对内存的读-改-写操作原子执行。在 Pentium 及 Pentium 之前的处理器中,带有 lock 前缀的指令在执行期间会锁住总线,使得其他处理器暂时无法通过总线访问内存。很显然,这会带来昂贵的开销。从 Pentium 4,Intel Xeon 及 P6 处理器开始,intel 在原有总线锁的基础上做了一个很有意义的优化:如果要访问的内存区域(area of memory)在 lock 前缀指令执行期间已经在处理器内部的缓存中被锁定(即包含该内存区域的缓存行当前处于独占或以修改状态),并且该内存区域被完全包含在单个缓存行(cache line)中,那么处理器将直接执行该指令。由于在指令执行期间该缓存行会一直被锁定,其它处理器无法读/写该指令要访问的内存区域,因此能保证指令执行的原子性。这个操作过程叫做缓存锁定(cache locking),缓存锁定将大大降低 lock 前缀指令的执行开销,但是当多处理器之间的竞争程度很高或者指令访问的内存地址未对齐时,仍然会锁住总线。
  2. 禁止该指令与之前和之后的读和写指令重排序。
  3. 把写缓冲区中的所有数据刷新到内存中。

备注知识:

关于 CPU 的锁有如下 3 种:

  3.1 处理器自动保证基本内存操作的原子性

  首先处理器会自动保证基本的内存操作的原子性。处理器保证从系统内存当中读取或者写入一个字节是原子的,意思是当一个处理器读取一个字节时,其他处理器不能访问这个字节的内存地址。奔腾 6 和最新的处理器能自动保证单处理器对同一个缓存行里进行 16/32/64 位的操作是原子的,但是复杂的内存操作处理器不能自动保证其原子性,比如跨总线宽度,跨多个缓存行,跨页表的访问。但是处理器提供总线锁定和缓存锁定两个机制来保证复杂内存操作的原子性。

  3.2 使用总线锁保证原子性

  第一个机制是通过总线锁保证原子性。如果多个处理器同时对共享变量进行读改写(i++ 就是经典的读改写操作)操作,那么共享变量就会被多个处理器同时进行操作,这样读改写操作就不是原子的,操作完之后共享变量的值会和期望的不一致,举个例子:如果 i=1,我们进行两次 i++ 操作,我们期望的结果是 3,但是有可能结果是 2。如下图

  原因是有可能多个处理器同时从各自的缓存中读取变量 i,分别进行加一操作,然后分别写入系统内存当中。那么想要保证读改写共享变量的操作是原子的,就必须保证 CPU1 读改写共享变量的时候,CPU2 不能操作缓存了该共享变量内存地址的缓存。

  处理器使用总线锁就是来解决这个问题的。所谓总线锁就是使用处理器提供的一个 LOCK#信号,当一个处理器在总线上输出此信号时,其他处理器的请求将被阻塞住,那么该处理器可以独占使用共享内存。

  3.3 使用缓存锁保证原子性

  第二个机制是通过缓存锁定保证原子性。在同一时刻我们只需保证对某个内存地址的操作是原子性即可,但总线锁定把 CPU 和内存之间通信锁住了,这使得锁定期间,其他处理器不能操作其他内存地址的数据,所以总线锁定的开销比较大,最近的处理器在某些场合下使用缓存锁定代替总线锁定来进行优化。

  频繁使用的内存会缓存在处理器的 L1,L2 和 L3 高速缓存里,那么原子操作就可以直接在处理器内部缓存中进行,并不需要声明总线锁,在奔腾 6 和最近的处理器中可以使用“缓存锁定”的方式来实现复杂的原子性。所谓“缓存锁定”就是如果缓存在处理器缓存行中内存区域在 LOCK 操作期间被锁定,当它执行锁操作回写内存时,处理器不在总线上声言 LOCK#信号,而是修改内部的内存地址,并允许它的缓存一致性机制来保证操作的原子性,因为缓存一致性机制会阻止同时修改被两个以上处理器缓存的内存区域数据,当其他处理器回写已被锁定的缓存行的数据时会起缓存行无效,在例 1 中,当 CPU1 修改缓存行中的 i 时使用缓存锁定,那么 CPU2 就不能同时缓存了 i 的缓存行。

  但是有两种情况下处理器不会使用缓存锁定。第一种情况是:当操作的数据不能被缓存在处理器内部,或操作的数据跨多个缓存行(cache line),则处理器会调用总线锁定。第二种情况是:有些处理器不支持缓存锁定。对于 Inter486 和奔腾处理器,就算锁定的内存区域在处理器的缓存行中也会调用总线锁定。

  以上两个机制我们可以通过 Inter 处理器提供了很多 LOCK 前缀的指令来实现。比如位测试和修改指令 BTS,BTR,BTC,交换指令 XADD,CMPXCHG 和其他一些操作数和逻辑指令,比如 ADD(加),OR(或)等,被这些指令操作的内存区域就会加锁,导致其他处理器不能同时访问它。

CAS 缺点

CAS 虽然很高效的解决原子操作,但是 CAS 仍然存在三大问题。ABA 问题,循环时间长开销大和只能保证一个共享变量的原子操作

1. ABA 问题。因为 CAS 需要在操作值的时候检查下值有没有发生变化,如果没有发生变化则更新,但是如果一个值原来是 A,变成了 B,又变成了 A,那么使用 CAS 进行检查时会发现它的值没有发生变化,但是实际上却变化了。ABA 问题的解决思路就是使用版本号。在变量前面追加上版本号,每次变量更新的时候把版本号加一,那么 A-B-A 就会变成 1A-2B-3A。

从 Java1.5 开始 JDK 的 atomic 包里提供了一个类 AtomicStampedReference 来解决 ABA 问题。这个类的 compareAndSet 方法作用是首先检查当前引用是否等于预期引用,并且当前标志是否等于预期标志,如果全部相等,则以原子方式将该引用和该标志的值设置为给定的更新值。

关于 ABA 问题参考文档: http://blog.hesey.net/2011/09/resolve-aba-by-atomicstampedreference.html

2. 循环时间长开销大。自旋 CAS 如果长时间不成功,会给 CPU 带来非常大的执行开销。如果 JVM 能支持处理器提供的 pause 指令那么效率会有一定的提升,pause 指令有两个作用,第一它可以延迟流水线执行指令(de-pipeline),使 CPU 不会消耗过多的执行资源,延迟的时间取决于具体实现的版本,在一些处理器上延迟时间是零。第二它可以避免在退出循环的时候因内存顺序冲突(memory order violation)而引起 CPU 流水线被清空(CPU pipeline flush),从而提高 CPU 的执行效率。

3. 只能保证一个共享变量的原子操作。当对一个共享变量执行操作时,我们可以使用循环 CAS 的方式来保证原子操作,但是对多个共享变量操作时,循环 CAS 就无法保证操作的原子性,这个时候就可以用锁,或者有一个取巧的办法,就是把多个共享变量合并成一个共享变量来操作。比如有两个共享变量 i=2,j=a,合并一下 ij=2a,然后用 CAS 来操作 ij。从 Java1.5 开始 JDK 提供了**AtomicReference 类来保证引用对象之间的原子性,你可以把多个变量放在一个对象里来进行 CAS 操作。**

concurrent 包的实现

由于 java 的 CAS 同时具有 volatile 读和 volatile 写的内存语义,因此 Java 线程之间的通信现在有了下面四种方式:

  1. A 线程写 volatile 变量,随后 B 线程读这个 volatile 变量。
  2. A 线程写 volatile 变量,随后 B 线程用 CAS 更新这个 volatile 变量。
  3. A 线程用 CAS 更新一个 volatile 变量,随后 B 线程用 CAS 更新这个 volatile 变量。
  4. A 线程用 CAS 更新一个 volatile 变量,随后 B 线程读这个 volatile 变量。

Java 的 CAS 会使用现代处理器上提供的高效机器级别原子指令,这些原子指令以原子方式对内存执行读-改-写操作,这是在多处理器中实现同步的关键(从本质上来说,能够支持原子性读-改-写指令的计算机器,是顺序计算图灵机的异步等价机器,因此任何现代的多处理器都会去支持某种能对内存执行原子性读-改-写操作的原子指令)。同时,volatile 变量的读/写和 CAS 可以实现线程之间的通信。把这些特性整合在一起,就形成了整个 concurrent 包得以实现的基石。如果我们仔细分析 concurrent 包的源代码实现,会发现一个通用化的实现模式:

  1. 首先,声明共享变量为 volatile;
  2. 然后,使用 CAS 的原子条件更新来实现线程之间的同步;
  3. 同时,配合以 volatile 的读/写和 CAS 所具有的 volatile 读和写的内存语义来实现线程之间的通信。

AQS,非阻塞数据结构和原子变量类(java.util.concurrent.atomic 包中的类),这些 concurrent 包中的基础类都是使用这种模式来实现的,而 concurrent 包中的高层类又是依赖于这些基础类来实现的。从整体来看,concurrent 包的实现示意图如下:

  • CAS
    13 引用 • 21 回帖

相关帖子

欢迎来到这里!

我们正在构建一个小众社区,大家在这里相互信任,以平等 • 自由 • 奔放的价值观进行分享交流。最终,希望大家能够找到与自己志同道合的伙伴,共同成长。

注册 关于
请输入回帖内容 ...

推荐标签 标签

  • 人工智能

    人工智能(Artificial Intelligence)是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门技术科学。

    132 引用 • 189 回帖
  • Pipe

    Pipe 是一款小而美的开源博客平台。Pipe 有着非常活跃的社区,可将文章作为帖子推送到社区,来自社区的回帖将作为博客评论进行联动(具体细节请浏览 B3log 构思 - 分布式社区网络)。

    这是一种全新的网络社区体验,让热爱记录和分享的你不再感到孤单!

    132 引用 • 1114 回帖 • 124 关注
  • 百度

    百度(Nasdaq:BIDU)是全球最大的中文搜索引擎、最大的中文网站。2000 年 1 月由李彦宏创立于北京中关村,致力于向人们提供“简单,可依赖”的信息获取方式。“百度”二字源于中国宋朝词人辛弃疾的《青玉案·元夕》词句“众里寻他千百度”,象征着百度对中文信息检索技术的执著追求。

    63 引用 • 785 回帖 • 175 关注
  • Postman

    Postman 是一款简单好用的 HTTP API 调试工具。

    4 引用 • 3 回帖 • 3 关注
  • Kafka

    Kafka 是一种高吞吐量的分布式发布订阅消息系统,它可以处理消费者规模的网站中的所有动作流数据。 这种动作(网页浏览,搜索和其他用户的行动)是现代系统中许多功能的基础。 这些数据通常是由于吞吐量的要求而通过处理日志和日志聚合来解决。

    36 引用 • 35 回帖
  • GraphQL

    GraphQL 是一个用于 API 的查询语言,是一个使用基于类型系统来执行查询的服务端运行时(类型系统由你的数据定义)。GraphQL 并没有和任何特定数据库或者存储引擎绑定,而是依靠你现有的代码和数据支撑。

    4 引用 • 3 回帖 • 9 关注
  • Mobi.css

    Mobi.css is a lightweight, flexible CSS framework that focus on mobile.

    1 引用 • 6 回帖 • 733 关注
  • Sphinx

    Sphinx 是一个基于 SQL 的全文检索引擎,可以结合 MySQL、PostgreSQL 做全文搜索,它可以提供比数据库本身更专业的搜索功能,使得应用程序更容易实现专业化的全文检索。

    1 引用 • 210 关注
  • Oracle

    Oracle(甲骨文)公司,全称甲骨文股份有限公司(甲骨文软件系统有限公司),是全球最大的企业级软件公司,总部位于美国加利福尼亚州的红木滩。1989 年正式进入中国市场。2013 年,甲骨文已超越 IBM,成为继 Microsoft 后全球第二大软件公司。

    105 引用 • 127 回帖 • 382 关注
  • 开源中国

    开源中国是目前中国最大的开源技术社区。传播开源的理念,推广开源项目,为 IT 开发者提供了一个发现、使用、并交流开源技术的平台。目前开源中国社区已收录超过两万款开源软件。

    7 引用 • 86 回帖
  • BAE

    百度应用引擎(Baidu App Engine)提供了 PHP、Java、Python 的执行环境,以及云存储、消息服务、云数据库等全面的云服务。它可以让开发者实现自动地部署和管理应用,并且提供动态扩容和负载均衡的运行环境,让开发者不用考虑高成本的运维工作,只需专注于业务逻辑,大大降低了开发者学习和迁移的成本。

    19 引用 • 75 回帖 • 642 关注
  • 机器学习

    机器学习(Machine Learning)是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。

    83 引用 • 37 回帖 • 1 关注
  • Love2D

    Love2D 是一个开源的, 跨平台的 2D 游戏引擎。使用纯 Lua 脚本来进行游戏开发。目前支持的平台有 Windows, Mac OS X, Linux, Android 和 iOS。

    14 引用 • 53 回帖 • 531 关注
  • Hprose

    Hprose 是一款先进的轻量级、跨语言、跨平台、无侵入式、高性能动态远程对象调用引擎库。它不仅简单易用,而且功能强大。你无需专门学习,只需看上几眼,就能用它轻松构建分布式应用系统。

    9 引用 • 17 回帖 • 611 关注
  • PWL

    组织简介

    用爱发电 (Programming With Love) 是一个以开源精神为核心的民间开源爱好者技术组织,“用爱发电”象征开源与贡献精神,加入组织,代表你将遵守组织的“个人开源爱好者”的各项条款。申请加入:用爱发电组织邀请帖
    用爱发电组织官网:https://programmingwithlove.stackoverflow.wiki/

    用爱发电组织的核心驱动力:

    • 遵守开源守则,体现开源&贡献精神:以分享为目的,拒绝非法牟利。
    • 自我保护:使用适当的 License 保护自己的原创作品。
    • 尊重他人:不以各种理由、各种漏洞进行未经允许的抄袭、散播、洩露;以礼相待,尊重所有对社区做出贡献的开发者;通过他人的分享习得知识,要留下足迹,表示感谢。
    • 热爱编程、热爱学习:加入组织,热爱编程是首当其要的。我们欢迎热爱讨论、分享、提问的朋友,也同样欢迎默默成就的朋友。
    • 倾听:正确并恳切对待、处理问题与建议,及时修复开源项目的 Bug ,及时与反馈者沟通。不抬杠、不无视、不辱骂。
    • 平视:不诋毁、轻视、嘲讽其他开发者,主动提出建议、施以帮助,以和谐为本。只要他人肯努力,你也可能会被昔日小看的人所超越,所以请保持谦虚。
    • 乐观且活跃:你的努力决定了你的高度。不要放弃,多年后回头俯瞰,才会发现自己已经成就往日所仰望的水平。积极地将项目开源,帮助他人学习、改进,自己也会获得相应的提升、成就与成就感。
    1 引用 • 487 回帖
  • jQuery

    jQuery 是一套跨浏览器的 JavaScript 库,强化 HTML 与 JavaScript 之间的操作。由 John Resig 在 2006 年 1 月的 BarCamp NYC 上释出第一个版本。全球约有 28% 的网站使用 jQuery,是非常受欢迎的 JavaScript 库。

    63 引用 • 134 回帖 • 724 关注
  • 外包

    有空闲时间是接外包好呢还是学习好呢?

    26 引用 • 232 回帖 • 2 关注
  • gRpc
    11 引用 • 9 回帖 • 73 关注
  • GitLab

    GitLab 是利用 Ruby 一个开源的版本管理系统,实现一个自托管的 Git 项目仓库,可通过 Web 界面操作公开或私有项目。

    46 引用 • 72 回帖
  • Node.js

    Node.js 是一个基于 Chrome JavaScript 运行时建立的平台, 用于方便地搭建响应速度快、易于扩展的网络应用。Node.js 使用事件驱动, 非阻塞 I/O 模型而得以轻量和高效。

    139 引用 • 269 回帖 • 43 关注
  • 以太坊

    以太坊(Ethereum)并不是一个机构,而是一款能够在区块链上实现智能合约、开源的底层系统。以太坊是一个平台和一种编程语言 Solidity,使开发人员能够建立和发布下一代去中心化应用。 以太坊可以用来编程、分散、担保和交易任何事物:投票、域名、金融交易所、众筹、公司管理、合同和知识产权等等。

    34 引用 • 367 回帖
  • Swift

    Swift 是苹果于 2014 年 WWDC(苹果开发者大会)发布的开发语言,可与 Objective-C 共同运行于 Mac OS 和 iOS 平台,用于搭建基于苹果平台的应用程序。

    36 引用 • 37 回帖 • 529 关注
  • webpack

    webpack 是一个用于前端开发的模块加载器和打包工具,它能把各种资源,例如 JS、CSS(less/sass)、图片等都作为模块来使用和处理。

    41 引用 • 130 回帖 • 261 关注
  • 一些有用的避坑指南。

    69 引用 • 93 回帖
  • CongSec

    本标签主要用于分享网络空间安全专业的学习笔记

    1 引用 • 1 回帖 • 9 关注
  • 支付宝

    支付宝是全球领先的独立第三方支付平台,致力于为广大用户提供安全快速的电子支付/网上支付/安全支付/手机支付体验,及转账收款/水电煤缴费/信用卡还款/AA 收款等生活服务应用。

    29 引用 • 347 回帖
  • NGINX

    NGINX 是一个高性能的 HTTP 和反向代理服务器,也是一个 IMAP/POP3/SMTP 代理服务器。 NGINX 是由 Igor Sysoev 为俄罗斯访问量第二的 Rambler.ru 站点开发的,第一个公开版本 0.1.0 发布于 2004 年 10 月 4 日。

    311 引用 • 546 回帖