11 大 Java 开源中文分词器的使用方法和分词效果对比

本贴最后更新于 2535 天前,其中的信息可能已经事过景迁

本文的目标有两个:

1、学会使用 11 大 Java 开源中文分词器

2、对比分析 11 大 Java 开源中文分词器的分词效果

本文给出了 11 大 Java 开源中文分词的使用方法以及分词结果对比代码,至于效果哪个好,那要用的人结合自己的应用场景自己来判断。

11 大 Java 开源中文分词器,不同的分词器有不同的用法,定义的接口也不一样,我们先定义一个统一的接口:

/**
 * 获取文本的所有分词结果, 对比不同分词器结果
 */
public interface WordSegmenter {
    /**
     * 获取文本的所有分词结果
     * @param text 文本
     * @return 所有的分词结果,去除重复
     */
    default public Set<String> seg(String text) {
        return segMore(text).values().stream().collect(Collectors.toSet());
    }
    /**
     * 获取文本的所有分词结果
     * @param text 文本
     * @return 所有的分词结果,KEY 为分词器模式,VALUE 为分词器结果
     */
    public Map<String, String> segMore(String text);
}

从上面的定义我们知道,在 Java 中,同样的方法名称和参数,但是返回值不同,这种情况不可以使用重载。

这两个方法的区别在于返回值,每一个分词器都可能有多种分词模式,每种模式的分词结果都可能不相同,第一个方法忽略分词器模式,返回所有模式的所有不重复分词结果,第二个方法返回每一种分词器模式及其对应的分词结果。

在这里,需要注意的是我们使用了 Java8 中的新特性默认方法,并使用 stream 把一个 map 的 value 转换为不重复的集合。

下面我们利用这 11 大分词器来实现这个接口:

1、word 分词器

@Override
public Map<String, String> segMore(String text) {
    Map<String, String> map = new HashMap<>();
    for(SegmentationAlgorithm segmentationAlgorithm : SegmentationAlgorithm.values()){
        map.put(segmentationAlgorithm.getDes(), seg(text, segmentationAlgorithm));
    }
    return map;
}
private static String seg(String text, SegmentationAlgorithm segmentationAlgorithm) {
    StringBuilder result = new StringBuilder();
    for(Word word : WordSegmenter.segWithStopWords(text, segmentationAlgorithm)){
        result.append(word.getText()).append(" ");
    }
    return result.toString();
}

2、Ansj 分词器

@Override
public Map<String, String> segMore(String text) {
    Map<String, String> map = new HashMap<>();

    StringBuilder result = new StringBuilder();
    for(Term term : BaseAnalysis.parse(text)){
        result.append(term.getName()).append(" ");
    }
    map.put("BaseAnalysis", result.toString());

    result.setLength(0);
    for(Term term : ToAnalysis.parse(text)){
        result.append(term.getName()).append(" ");
    }
    map.put("ToAnalysis", result.toString());

    result.setLength(0);
    for(Term term : NlpAnalysis.parse(text)){
        result.append(term.getName()).append(" ");
    }
    map.put("NlpAnalysis", result.toString());

    result.setLength(0);
    for(Term term : IndexAnalysis.parse(text)){
        result.append(term.getName()).append(" ");
    }
    map.put("IndexAnalysis", result.toString());

    return map;
}

3、Stanford 分词器

private static final StanfordCoreNLP CTB = new StanfordCoreNLP("StanfordCoreNLP-chinese-ctb");
private static final StanfordCoreNLP PKU = new StanfordCoreNLP("StanfordCoreNLP-chinese-pku");
private static final PrintStream NULL_PRINT_STREAM = new PrintStream(new NullOutputStream(), false);
public Map<String, String> segMore(String text) {
    Map<String, String> map = new HashMap<>();
    map.put("Stanford Beijing University segmentation", seg(PKU, text));
    map.put("Stanford Chinese Treebank segmentation", seg(CTB, text));
    return map;
}
private static String seg(StanfordCoreNLP stanfordCoreNLP, String text){
    PrintStream err = System.err;
    System.setErr(NULL_PRINT_STREAM);
    Annotation document = new Annotation(text);
    stanfordCoreNLP.annotate(document);
    List<CoreMap> sentences = document.get(CoreAnnotations.SentencesAnnotation.class);
    StringBuilder result = new StringBuilder();
    for(CoreMap sentence: sentences) {
        for (CoreLabel token: sentence.get(CoreAnnotations.TokensAnnotation.class)) {
            String word = token.get(CoreAnnotations.TextAnnotation.class);;
            result.append(word).append(" ");
        }
    }
    System.setErr(err);
    return result.toString();
}

4、FudanNLP 分词器

private static CWSTagger tagger = null;
static{
    try{
        tagger = new CWSTagger("lib/fudannlp_seg.m");
        tagger.setEnFilter(true);
    }catch(Exception e){
        e.printStackTrace();
    }
}
@Override
public Map<String, String> segMore(String text) {
    Map<String, String> map = new HashMap<>();
    map.put("FudanNLP", tagger.tag(text));
    return map;
}

5、Jieba 分词器

private static final JiebaSegmenter JIEBA_SEGMENTER = new JiebaSegmenter();
@Override
public Map<String, String> segMore(String text) {
    Map<String, String> map = new HashMap<>();
    map.put("INDEX", seg(text, SegMode.INDEX));
    map.put("SEARCH", seg(text, SegMode.SEARCH));
    return map;
}
private static String seg(String text, SegMode segMode) {
    StringBuilder result = new StringBuilder();                
    for(SegToken token : JIEBA_SEGMENTER.process(text, segMode)){
        result.append(token.word.getToken()).append(" ");
    }
    return result.toString(); 
}

6、Jcseg 分词器

private static final JcsegTaskConfig CONFIG = new JcsegTaskConfig();
private static final ADictionary DIC = DictionaryFactory.createDefaultDictionary(CONFIG);
static {
    CONFIG.setLoadCJKSyn(false);
    CONFIG.setLoadCJKPinyin(false);
}
@Override
public Map<String, String> segMore(String text) {
    Map<String, String> map = new HashMap<>();

    map.put("复杂模式", segText(text, JcsegTaskConfig.COMPLEX_MODE));
    map.put("简易模式", segText(text, JcsegTaskConfig.SIMPLE_MODE));

    return map;
}
private String segText(String text, int segMode) {
    StringBuilder result = new StringBuilder();        
    try {
        ISegment seg = SegmentFactory.createJcseg(segMode, new Object[]{new StringReader(text), CONFIG, DIC});
        IWord word = null;
        while((word=seg.next())!=null) {         
            result.append(word.getValue()).append(" ");
        }
    } catch (Exception ex) {
        throw new RuntimeException(ex);
    }
    return result.toString();
}

7、MMSeg4j 分词器

private static final Dictionary DIC = Dictionary.getInstance();
private static final SimpleSeg SIMPLE_SEG = new SimpleSeg(DIC);
private static final ComplexSeg COMPLEX_SEG = new ComplexSeg(DIC);
private static final MaxWordSeg MAX_WORD_SEG = new MaxWordSeg(DIC);
@Override
public Map<String, String> segMore(String text) {
    Map<String, String> map = new HashMap<>();
    map.put(SIMPLE_SEG.getClass().getSimpleName(), segText(text, SIMPLE_SEG));
    map.put(COMPLEX_SEG.getClass().getSimpleName(), segText(text, COMPLEX_SEG));
    map.put(MAX_WORD_SEG.getClass().getSimpleName(), segText(text, MAX_WORD_SEG));
    return map;
}
private String segText(String text, Seg seg) {
    StringBuilder result = new StringBuilder();
    MMSeg mmSeg = new MMSeg(new StringReader(text), seg);        
    try {
        Word word = null;
        while((word=mmSeg.next())!=null) {       
            result.append(word.getString()).append(" ");
        }
    } catch (IOException ex) {
        throw new RuntimeException(ex);
    }
    return result.toString();
}

8、IKAnalyzer 分词器

@Override
public Map<String, String> segMore(String text) {
    Map<String, String> map = new HashMap<>();

    map.put("智能切分", segText(text, true));
    map.put("细粒度切分", segText(text, false));

    return map;
}
private String segText(String text, boolean useSmart) {
    StringBuilder result = new StringBuilder();
    IKSegmenter ik = new IKSegmenter(new StringReader(text), useSmart);        
    try {
        Lexeme word = null;
        while((word=ik.next())!=null) {          
            result.append(word.getLexemeText()).append(" ");
        }
    } catch (IOException ex) {
        throw new RuntimeException(ex);
    }
    return result.toString();
}

9、Paoding 分词器

private static final PaodingAnalyzer ANALYZER = new PaodingAnalyzer();
@Override
public Map<String, String> segMore(String text) {
    Map<String, String> map = new HashMap<>();

    map.put("MOST_WORDS_MODE", seg(text, PaodingAnalyzer.MOST_WORDS_MODE));
    map.put("MAX_WORD_LENGTH_MODE", seg(text, PaodingAnalyzer.MAX_WORD_LENGTH_MODE));

    return map;
}
private static String seg(String text, int mode){
    ANALYZER.setMode(mode);
    StringBuilder result = new StringBuilder();
    try {
        Token reusableToken = new Token();
        TokenStream stream = ANALYZER.tokenStream("", new StringReader(text));
        Token token = null;
        while((token = stream.next(reusableToken)) != null){
            result.append(token.term()).append(" ");
        }
    } catch (Exception ex) {
        throw new RuntimeException(ex);
    }
    return result.toString();          
}

10、smartcn 分词器

private static final SmartChineseAnalyzer SMART_CHINESE_ANALYZER = new SmartChineseAnalyzer();
@Override
public Map<String, String> segMore(String text) {
    Map<String, String> map = new HashMap<>();
    map.put("smartcn", segText(text));
    return map;
}
private static String segText(String text) {
    StringBuilder result = new StringBuilder();
    try {
        TokenStream tokenStream = SMART_CHINESE_ANALYZER.tokenStream("text", new StringReader(text));
        tokenStream.reset();
        while (tokenStream.incrementToken()){
            CharTermAttribute charTermAttribute = tokenStream.getAttribute(CharTermAttribute.class);
            result.append(charTermAttribute.toString()).append(" ");
        }
        tokenStream.close();
    }catch (Exception e){
        e.printStackTrace();
    }
    return result.toString();
}

11、HanLP 分词器

private static final Segment N_SHORT_SEGMENT = new NShortSegment().enableCustomDictionary(false).enablePlaceRecognize(true).enableOrganizationRecognize(true);
private static final Segment DIJKSTRA_SEGMENT = new DijkstraSegment().enableCustomDictionary(false).enablePlaceRecognize(true).enableOrganizationRecognize(true);
@Override
public Map<String, String> segMore(String text) {
    Map<String, String> map = new HashMap<>();
    map.put("标准分词", standard(text));
    map.put("NLP分词", nlp(text));
    map.put("索引分词", index(text));
    map.put("N-最短路径分词", nShort(text));
    map.put("最短路径分词", shortest(text));
    map.put("极速词典分词", speed(text));
    return map;
}
private static String standard(String text) {
    StringBuilder result = new StringBuilder();
    StandardTokenizer.segment(text).forEach(term->result.append(term.word).append(" "));
    return result.toString();
}
private static String nlp(String text) {
    StringBuilder result = new StringBuilder();
    NLPTokenizer.segment(text).forEach(term->result.append(term.word).append(" "));
    return result.toString();
}
private static String index(String text) {
    StringBuilder result = new StringBuilder();
    IndexTokenizer.segment(text).forEach(term->result.append(term.word).append(" "));
    return result.toString();
}
private static String speed(String text) {
    StringBuilder result = new StringBuilder();
    SpeedTokenizer.segment(text).forEach(term->result.append(term.word).append(" "));
    return result.toString();
}
private static String nShort(String text) {
    StringBuilder result = new StringBuilder();
    N_SHORT_SEGMENT.seg(text).forEach(term->result.append(term.word).append(" "));
    return result.toString();
}
private static String shortest(String text) {
    StringBuilder result = new StringBuilder();
    DIJKSTRA_SEGMENT.seg(text).forEach(term->result.append(term.word).append(" "));
    return result.toString();
}

现在我们已经实现了本文的第一个目的:学会使用 11 大 Java 开源中文分词器。

最后我们来实现本文的第二个目的:对比分析 11 大 Java 开源中文分词器的分词效果,程序如下:

public static Map<String, Set<String>> contrast(String text){
    Map<String, Set<String>> map = new LinkedHashMap<>();
    map.put("word分词器", new WordEvaluation().seg(text));
    map.put("Stanford分词器", new StanfordEvaluation().seg(text));
    map.put("Ansj分词器", new AnsjEvaluation().seg(text));
    map.put("HanLP分词器", new HanLPEvaluation().seg(text));
    map.put("FudanNLP分词器", new FudanNLPEvaluation().seg(text));
    map.put("Jieba分词器", new JiebaEvaluation().seg(text));
    map.put("Jcseg分词器", new JcsegEvaluation().seg(text));
    map.put("MMSeg4j分词器", new MMSeg4jEvaluation().seg(text));
    map.put("IKAnalyzer分词器", new IKAnalyzerEvaluation().seg(text));
    map.put("smartcn分词器", new SmartCNEvaluation().seg(text));
    return map;
}
public static Map<String, Map<String, String>> contrastMore(String text){
    Map<String, Map<String, String>> map = new LinkedHashMap<>();
    map.put("word分词器", new WordEvaluation().segMore(text));
    map.put("Stanford分词器", new StanfordEvaluation().segMore(text));
    map.put("Ansj分词器", new AnsjEvaluation().segMore(text));
    map.put("HanLP分词器", new HanLPEvaluation().segMore(text));
    map.put("FudanNLP分词器", new FudanNLPEvaluation().segMore(text));
    map.put("Jieba分词器", new JiebaEvaluation().segMore(text));
    map.put("Jcseg分词器", new JcsegEvaluation().segMore(text));
    map.put("MMSeg4j分词器", new MMSeg4jEvaluation().segMore(text));
    map.put("IKAnalyzer分词器", new IKAnalyzerEvaluation().segMore(text));
    map.put("smartcn分词器", new SmartCNEvaluation().segMore(text));
    return map;
}
public static void show(Map<String, Set<String>> map){
    map.keySet().forEach(k -> {
        System.out.println(k + " 的分词结果:");
        AtomicInteger i = new AtomicInteger();
        map.get(k).forEach(v -> {
            System.out.println("\t" + i.incrementAndGet() + " 、" + v);
        });
    });
}
public static void showMore(Map<String, Map<String, String>> map){
    map.keySet().forEach(k->{
        System.out.println(k + " 的分词结果:");
        AtomicInteger i = new AtomicInteger();
        map.get(k).keySet().forEach(a -> {
            System.out.println("\t" + i.incrementAndGet()+ " 、【"   + a + "】\t" + map.get(k).get(a));
        });
    });
}
public static void main(String[] args) {
    show(contrast("我爱楚离陌"));
    showMore(contrastMore("我爱楚离陌"));
}

运行结果如下:

********************************************
word分词器 的分词结果:
	1 、我 爱 楚离陌 
Stanford分词器 的分词结果:
	1 、我 爱 楚 离陌 
	2 、我 爱 楚离陌 
Ansj分词器 的分词结果:
	1 、我 爱 楚离 陌 
	2 、我 爱 楚 离 陌 
HanLP分词器 的分词结果:
	1 、我 爱 楚 离 陌 
smartcn分词器 的分词结果:
	1 、我 爱 楚 离 陌 
FudanNLP分词器 的分词结果:
	1 、我 爱楚离陌
Jieba分词器 的分词结果:
	1 、我爱楚 离 陌 
Jcseg分词器 的分词结果:
	1 、我 爱 楚 离 陌 
MMSeg4j分词器 的分词结果:
	1 、我爱 楚 离 陌 
IKAnalyzer分词器 的分词结果:
	1 、我 爱 楚 离 陌 
********************************************
********************************************
word分词器 的分词结果:
	1 、【全切分算法】	我 爱 楚离陌 
	2 、【双向最大最小匹配算法】	我 爱 楚离陌 
	3 、【正向最大匹配算法】	我 爱 楚离陌 
	4 、【双向最大匹配算法】	我 爱 楚离陌 
	5 、【逆向最大匹配算法】	我 爱 楚离陌 
	6 、【正向最小匹配算法】	我 爱 楚离陌 
	7 、【双向最小匹配算法】	我 爱 楚离陌 
	8 、【逆向最小匹配算法】	我 爱 楚离陌 
Stanford分词器 的分词结果:
	1 、【Stanford Chinese Treebank segmentation】	我 爱 楚离陌 
	2 、【Stanford Beijing University segmentation】	我 爱 楚 离陌 
Ansj分词器 的分词结果:
	1 、【BaseAnalysis】	我 爱 楚 离 陌 
	2 、【IndexAnalysis】	我 爱 楚 离 陌 
	3 、【ToAnalysis】	我 爱 楚 离 陌 
	4 、【NlpAnalysis】	我 爱 楚离 陌 
HanLP分词器 的分词结果:
	1 、【NLP分词】	我 爱 楚 离 陌 
	2 、【标准分词】	我 爱 楚 离 陌 
	3 、【N-最短路径分词】	我 爱 楚 离 陌 
	4 、【索引分词】	我 爱 楚 离 陌 
	5 、【最短路径分词】	我 爱 楚 离 陌 
	6 、【极速词典分词】	我 爱 楚 离 陌 
smartcn分词器 的分词结果:
	1 、【smartcn】	我 爱 楚 离 陌 
FudanNLP分词器 的分词结果:
	1 、【FudanNLP】	我 爱楚离陌
Jieba分词器 的分词结果:
	1 、【SEARCH】	我爱楚 离 陌 
	2 、【INDEX】	我爱楚 离 陌 
Jcseg分词器 的分词结果:
	1 、【简易模式】	我 爱 楚 离 陌 
	2 、【复杂模式】	我 爱 楚 离 陌 
MMSeg4j分词器 的分词结果:
	1 、【SimpleSeg】	我爱 楚 离 陌 
	2 、【ComplexSeg】	我爱 楚 离 陌 
	3 、【MaxWordSeg】	我爱 楚 离 陌 
IKAnalyzer分词器 的分词结果:
	1 、【智能切分】	我 爱 楚 离 陌 
	2 、【细粒度切分】	我 爱 楚 离 陌 
********************************************

这篇文章是无意中发现的,属于转载,不喜勿喷
完成代码地址 https://github.com/ysc/cws_evaluation/blob/master/src/org/apdplat/evaluation/WordSegmenter.java

  • Java

    Java 是一种可以撰写跨平台应用软件的面向对象的程序设计语言,是由 Sun Microsystems 公司于 1995 年 5 月推出的。Java 技术具有卓越的通用性、高效性、平台移植性和安全性。

    3186 引用 • 8213 回帖
  • 中文分词
    4 引用 • 3 回帖

相关帖子

欢迎来到这里!

我们正在构建一个小众社区,大家在这里相互信任,以平等 • 自由 • 奔放的价值观进行分享交流。最终,希望大家能够找到与自己志同道合的伙伴,共同成长。

注册 关于
请输入回帖内容 ...

推荐标签 标签

  • NGINX

    NGINX 是一个高性能的 HTTP 和反向代理服务器,也是一个 IMAP/POP3/SMTP 代理服务器。 NGINX 是由 Igor Sysoev 为俄罗斯访问量第二的 Rambler.ru 站点开发的,第一个公开版本 0.1.0 发布于 2004 年 10 月 4 日。

    311 引用 • 546 回帖
  • 996
    13 引用 • 200 回帖 • 7 关注
  • Mac

    Mac 是苹果公司自 1984 年起以“Macintosh”开始开发的个人消费型计算机,如:iMac、Mac mini、Macbook Air、Macbook Pro、Macbook、Mac Pro 等计算机。

    166 引用 • 595 回帖
  • Ruby

    Ruby 是一种开源的面向对象程序设计的服务器端脚本语言,在 20 世纪 90 年代中期由日本的松本行弘(まつもとゆきひろ/Yukihiro Matsumoto)设计并开发。在 Ruby 社区,松本也被称为马茨(Matz)。

    7 引用 • 31 回帖 • 213 关注
  • OpenShift

    红帽提供的 PaaS 云,支持多种编程语言,为开发人员提供了更为灵活的框架、存储选择。

    14 引用 • 20 回帖 • 629 关注
  • JVM

    JVM(Java Virtual Machine)Java 虚拟机是一个微型操作系统,有自己的硬件构架体系,还有相应的指令系统。能够识别 Java 独特的 .class 文件(字节码),能够将这些文件中的信息读取出来,使得 Java 程序只需要生成 Java 虚拟机上的字节码后就能在不同操作系统平台上进行运行。

    180 引用 • 120 回帖
  • Bug

    Bug 本意是指臭虫、缺陷、损坏、犯贫、窃听器、小虫等。现在人们把在程序中一些缺陷或问题统称为 bug(漏洞)。

    75 引用 • 1737 回帖
  • 旅游

    希望你我能在旅途中找到人生的下一站。

    90 引用 • 899 回帖 • 1 关注
  • Node.js

    Node.js 是一个基于 Chrome JavaScript 运行时建立的平台, 用于方便地搭建响应速度快、易于扩展的网络应用。Node.js 使用事件驱动, 非阻塞 I/O 模型而得以轻量和高效。

    139 引用 • 269 回帖 • 46 关注
  • SMTP

    SMTP(Simple Mail Transfer Protocol)即简单邮件传输协议,它是一组用于由源地址到目的地址传送邮件的规则,由它来控制信件的中转方式。SMTP 协议属于 TCP/IP 协议簇,它帮助每台计算机在发送或中转信件时找到下一个目的地。

    4 引用 • 18 回帖 • 614 关注
  • HTML

    HTML5 是 HTML 下一个的主要修订版本,现在仍处于发展阶段。广义论及 HTML5 时,实际指的是包括 HTML、CSS 和 JavaScript 在内的一套技术组合。

    107 引用 • 295 回帖
  • API

    应用程序编程接口(Application Programming Interface)是一些预先定义的函数,目的是提供应用程序与开发人员基于某软件或硬件得以访问一组例程的能力,而又无需访问源码,或理解内部工作机制的细节。

    77 引用 • 429 回帖 • 1 关注
  • SEO

    发布对别人有帮助的原创内容是最好的 SEO 方式。

    35 引用 • 200 回帖 • 16 关注
  • webpack

    webpack 是一个用于前端开发的模块加载器和打包工具,它能把各种资源,例如 JS、CSS(less/sass)、图片等都作为模块来使用和处理。

    41 引用 • 130 回帖 • 264 关注
  • Ubuntu

    Ubuntu(友帮拓、优般图、乌班图)是一个以桌面应用为主的 Linux 操作系统,其名称来自非洲南部祖鲁语或豪萨语的“ubuntu”一词,意思是“人性”、“我的存在是因为大家的存在”,是非洲传统的一种价值观,类似华人社会的“仁爱”思想。Ubuntu 的目标在于为一般用户提供一个最新的、同时又相当稳定的主要由自由软件构建而成的操作系统。

    124 引用 • 169 回帖
  • SVN

    SVN 是 Subversion 的简称,是一个开放源代码的版本控制系统,相较于 RCS、CVS,它采用了分支管理系统,它的设计目标就是取代 CVS。

    29 引用 • 98 回帖 • 682 关注
  • Bootstrap

    Bootstrap 是 Twitter 推出的一个用于前端开发的开源工具包。它由 Twitter 的设计师 Mark Otto 和 Jacob Thornton 合作开发,是一个 CSS / HTML 框架。

    18 引用 • 33 回帖 • 660 关注
  • danl
    131 关注
  • 微软

    微软是一家美国跨国科技公司,也是世界 PC 软件开发的先导,由比尔·盖茨与保罗·艾伦创办于 1975 年,公司总部设立在华盛顿州的雷德蒙德(Redmond,邻近西雅图)。以研发、制造、授权和提供广泛的电脑软件服务业务为主。

    8 引用 • 44 回帖
  • Vim

    Vim 是类 UNIX 系统文本编辑器 Vi 的加强版本,加入了更多特性来帮助编辑源代码。Vim 的部分增强功能包括文件比较(vimdiff)、语法高亮、全面的帮助系统、本地脚本(Vimscript)和便于选择的可视化模式。

    29 引用 • 66 回帖 • 1 关注
  • CodeMirror
    1 引用 • 2 回帖 • 127 关注
  • LaTeX

    LaTeX(音译“拉泰赫”)是一种基于 ΤΕΧ 的排版系统,由美国计算机学家莱斯利·兰伯特(Leslie Lamport)在 20 世纪 80 年代初期开发,利用这种格式,即使使用者没有排版和程序设计的知识也可以充分发挥由 TeX 所提供的强大功能,能在几天,甚至几小时内生成很多具有书籍质量的印刷品。对于生成复杂表格和数学公式,这一点表现得尤为突出。因此它非常适用于生成高印刷质量的科技和数学类文档。

    12 引用 • 54 回帖 • 73 关注
  • WebComponents

    Web Components 是 W3C 定义的标准,它给了前端开发者扩展浏览器标签的能力,可以方便地定制可复用组件,更好的进行模块化开发,解放了前端开发者的生产力。

    1 引用 • 2 关注
  • 分享

    有什么新发现就分享给大家吧!

    248 引用 • 1792 回帖
  • App

    App(应用程序,Application 的缩写)一般指手机软件。

    91 引用 • 384 回帖
  • 友情链接

    确认过眼神后的灵魂连接,站在链在!

    24 引用 • 373 回帖 • 1 关注
  • PWL

    组织简介

    用爱发电 (Programming With Love) 是一个以开源精神为核心的民间开源爱好者技术组织,“用爱发电”象征开源与贡献精神,加入组织,代表你将遵守组织的“个人开源爱好者”的各项条款。申请加入:用爱发电组织邀请帖
    用爱发电组织官网:https://programmingwithlove.stackoverflow.wiki/

    用爱发电组织的核心驱动力:

    • 遵守开源守则,体现开源&贡献精神:以分享为目的,拒绝非法牟利。
    • 自我保护:使用适当的 License 保护自己的原创作品。
    • 尊重他人:不以各种理由、各种漏洞进行未经允许的抄袭、散播、洩露;以礼相待,尊重所有对社区做出贡献的开发者;通过他人的分享习得知识,要留下足迹,表示感谢。
    • 热爱编程、热爱学习:加入组织,热爱编程是首当其要的。我们欢迎热爱讨论、分享、提问的朋友,也同样欢迎默默成就的朋友。
    • 倾听:正确并恳切对待、处理问题与建议,及时修复开源项目的 Bug ,及时与反馈者沟通。不抬杠、不无视、不辱骂。
    • 平视:不诋毁、轻视、嘲讽其他开发者,主动提出建议、施以帮助,以和谐为本。只要他人肯努力,你也可能会被昔日小看的人所超越,所以请保持谦虚。
    • 乐观且活跃:你的努力决定了你的高度。不要放弃,多年后回头俯瞰,才会发现自己已经成就往日所仰望的水平。积极地将项目开源,帮助他人学习、改进,自己也会获得相应的提升、成就与成就感。
    1 引用 • 487 回帖 • 3 关注