Description:
Say you have an array for which the i^{th} element is the price of a given stock on day i.
Design an algorithm to find the maximum profit. You may complete as many transactions as you like (i.e., buy one and sell one share of the stock multiple times).
Note: You may not engage in multiple transactions at the same time (i.e., you must sell the stock before you buy again).
Example 1:
Input: [7,1,5,3,6,4]
Output: 7
Explanation: Buy on day 2 (price = 1) and sell on day 3 (price = 5), profit = 5-1 = 4.
Then buy on day 4 (price = 3) and sell on day 5 (price = 6), profit = 6-3 = 3.
Example 2:
Input: [1,2,3,4,5]
Output: 4
Explanation: Buy on day 1 (price = 1) and sell on day 5 (price = 5), profit = 5-1 = 4.
Note that you cannot buy on day 1, buy on day 2 and sell them later, as you are
engaging multiple transactions at the same time. You must sell before buying again.
Example 3:
Input: [7,6,4,3,1]
Output: 0
Explanation: In this case, no transaction is done, i.e. max profit = 0.
思路:本题在 121 Best Time to Buy and Sell Stock 上增加了可以多次买入卖出。这里存在一个技巧,只需要把每个相邻数组元素的值加起来,即可得最大差值,即最大利润。
C++ 代码
class Solution {
public:
int maxProfit(vector<int>& prices) {
int res = 0, n = prices.size();
for (int i = 0; i < n - 1; ++i) {
if (prices[i] < prices[i + 1]) {
res += prices[i + 1] - prices[i];
}
}
return res;
}
};
运行时间:8ms
运行内存:9.4M
欢迎来到这里!
我们正在构建一个小众社区,大家在这里相互信任,以平等 • 自由 • 奔放的价值观进行分享交流。最终,希望大家能够找到与自己志同道合的伙伴,共同成长。
注册 关于