大数据学习 PPT,讲述大数据基础的概念,Hadoop 生态,常用技术。(PPT+ 讲义)

本贴最后更新于 2049 天前,其中的信息可能已经时移世异

本文为 PPT 的讲义,请配合 PPT 使用。
因为是对公司同事的大数据科普课程,因此基础思想讲的比较多。技术详情,PPT 中写的比较清楚。
PPT 在此云盘连接中。
链接:大数据学习 PPT 百度云盘提取码:ll08
因为是讲义,所以行文比较口语化,大家见谅。

起始语:

“大家好,今天很荣幸和大家一起来了解一下大数据,让咱们对现在很火热的大数据有一个大概的了解。我们今天会讲到大数据的来源,大数据的概念,大数据的相关核心技术与组件,以及大数据的应用等。”

  • 首选我们看大数据的来源。
    说起大数据,那么就要先说说数据。数据的本质是什么呢?

  • 4:念
    在十几年前,可能大家数据还没有现在这么看重,有些时候对一些数据,比如系统日志,操作日志,还有一些机器的参数记录,一些视频记录,都认为是杂乱的,没有太大价值的“副产物”,没有认识到数据的真正价值,很多时候都是一删了之。但是现在,数据已经被放到了非常重要的战略地位。数据现在被认为是最重要的资产和资源之一。国家现在也对数据资产很重视。

  • 5:念。
    另一个现实是数据在不断地爆炸性增长。大家自己也能直观的感受到。比如说手机的存储。从几年前的 8 个 G12 个 G,到现在的 64G128G。但是依然很快就不够用了。自己出去玩一次能拍几百多张照片。APP 大小从几 M 到几百 M。更别说我们使用 APP 产生的海量数据了。

  • 6:
    但是这就导致了一个新的问题。
    数据资产的概念被人们接受了。大家都了解到管理数据资产的重要性。
    如何理解呢,曾经,关系型数据库是万能的。我们做任何系统都会去使用关系型数据库。但是现在单纯的关系型数据库,不管是单机还是集群,已经无法满足现有需求了。看 PPT

  • 7:
    现有的数据资产管理的挑战主要来源于哪里。
    看 PPT

那对于新时代的 数据资产,对于现有的大数据管理现状,我们都有哪些新的需求呢?

  • 8:
    首先是看数据的方式要不同,这个看,怎么理解呢。这个看不仅仅是指 前端看报表,看页面,主要指的是看待数据的方式,我们以前看数据,会直观的把数据结构化,关系化。认为有序的,符合范式的数据才是好数据,才是可以利用的数据,我们去找数据,利用数据,只看到了这部分数据,却没有看到冰山下更多的数据。现在我们要转变看数据的观念,看到隐藏在海面下的冰山。这部分数据是什么呢?PPT

  • 9:
    其次,我们需要更高性价比的计算与存储方式。物理上,我们现在单机存储,是很昂贵的。而且是越大,越昂贵。计算能力,如果是单纯依靠堆服务器,那成本更加不可想象。数据库层面,超过一定数据量后,单机数据库就无法使用了,数据库集群的成本和系统复杂度又过于高昂,现在暴炸性的数据和计算,我们需要更加廉价,更高效的处理方式。

  • 10:
    再然后,以前的数据管理策略都是基于结构化数据的,在遇到不同的数据结构式,显然已经无法处理了。再有,现有的处理逻辑和系统架构,业无法适应大数据时代的需求。想要扩充,只能 scale-up(扩展),scale-out(分体扩展。) 不易;scale Up(纵向扩展) 主要是利用现有的存储系统,通过不断增加存储容量来满足数据增长的需求。Scale-out 横向扩展架构的升级通常是以节点为单位,每个节点往往将包含容量、处理能力和 I / O 带宽。一个节点被添加到存储系统,系统中的三种资源将同时升级。
    PPT。

  • 11:
    再有,从以下四个方面 PPT。这四方面都提出了巨大的考验,这些已经超出了现有企业 It 能独自解决的能量范围了。我们需要一种新的,适应爆炸性的数据增长,能解决我们之前提出的问题的解决方案。

  • 12:
    再从政策层面说,现在的中央政府对大数据很支持,PPT。
    郑州已经被设立为八个国家大数据综合试验区之一。
    郑州是地级市中唯一设立大数据管理局的。其他都为政务与大数据管理局。
    从这些国家领导人的话和各项落实的政策里,可以看到,大数据时代已经到来。我们也需要新的技术来解决我们遇到的数据问题,而这个选择就是大数据。

  • 13:
    我们接下来来了解一下大数据的概念。
    什么是大数据?
    以及大数据技术所带来的的思维模式与之前有什么不同?有什么特点,又能带来怎样的变化。

  • 14:
    首选,什么是数据?
    PPT
    从数据结构上来说,有结构化,半结构化,非结构化。
    从感受上来说,万物皆为数据,我们所能看到的,所能感受到的,甚至无法感受的,都可以说是数据。能看到的,结构化的文档,非结构化的视频,等等。

  • 15:
    那什么是大数据呢?
    这个大作何解释,首选大,是体量上的大。PPT
    1K 就已经是 2 的十次方 bit 了。一个 bit 是 一个 0 或 1。
    1M 是 2 的 20 次方,1G 是 2 的 30 次方,1T 是 2 的 40 次方,1PB 是 2 的 50 次方
    银河系星球数量是 4*10 的 11 次方。

  • 16:
    数据是如此之多,以至于,已经没有办法在可容忍的时间下使用常规软件方法完成存储、管理和处理任务。
    从 PPT 可以看到,
    2010 年产生的新数据就可以抵得上 52000 个美国国会图书馆。那么到如今 2018 年呢。每年的数据增长量都是百分之几十的递增。如今的数据存储量更是暴涨。

  • 17:
    综合以上所述的种种情况,我们来看一下各个机构对大数据的定义是什么?
    PPT

  • 18:
    我们综合这些定义,可以得出一个什么结论呢?我们看 PPT,念定义。
    这个图展示了系统和数据量级,以及数据的复杂性增长。
    ERP 业务是最复杂的,但是数据结构是最清洗,数据量是最小的。
    最后的日志之类的,甚至没有业务逻辑,但是数据是最复杂的,量是最大的。

  • 19:
    定义了大数据,我们来看一下大数据的 4v 特性。
    PPT
    有人呢,把大数据 4V 特性,扩展为了十个字。我们接下来再讲

  • 20:
    首选讲讲体量特性,就是指大数据体量极大。这个大家从之前的 PPT 都能看到。大数据首先要解决的就是数据体量大的问题。

  • 21:
    速度特性,一方面是指数据增长的速度极快,另一方面讲是说数据处理的速度极快

  • 22:
    年 PPT

  • 23:
    价值密度,大数据并不是说数据量多了,数据价值就更高。可能数据量增大后,数据平均价值是下降的。也就是说数据的价值密度比较低。

  • 24:
    以上四个特性是外国人总结的,下面我们讲讲中国人总结的,这是华为的大数据专家傅一航总结的,大数据的十字特性。PPT

  • 25:
    念 PPT

  • 26:
    念 PPT

  • 27:
    念 PPT

  • 28:
    念 PPT
    这十个字,是对大数据 4v 特性的深化。

  • 29:
    大数据时代,大数据技术的到来,不光带来了技术上,数据存储上的革新。同时也带来了新的思维模式来处理数据,主要是从以下三个方面来。PPT

  • 30:
    如何理解呢,我们看 PPT,如何理解更多。?
    以前,我们无法收集尽可能多的数据,只能尽量收集关键数据,也无法存储所有的数据,没有能力去计算所有的数据。所以,我们进行的计算,分析都是基于样本数据的。但是现在不一样了,我们能够获取全部数据,可以用比较廉价的算力和存储来进行数据的收集和分析,我们就可以对,所有的数据进行分析。以 PPT 所示的人口调查的例子来说。

  • 31:
    如何理解更杂?
    我们以前整理数据,获取数据都是追求越精确越好,数据越干净越纯净越好。这一方面是因为我们人类对于真理,对于精准的追求,另一方面,也是迫于现实情况。我们只能从混乱中提取出精准,才能处理。我们有限的资源只能处理精准的数据。但是大数据技术,大数据时代改变了这个形式。根据 4v 特性,大数据的价值密度是很低的。体量是很大的。必然,这些混杂数据质量没有精准数据高。但是,这不是缺陷,而是另一种价值。我们从中可以获取更多的信息,更多的价值。看 ppt

  • 32:
    如何理解更好,也就是因果关系与相关关系呢。
    我们看 PPT
    因果很好理解,从 A 推出 B,从 B 推出 C。那什么是相关呢。我们同属于一个公司,我们是相关的,我是男性,所有男性和我都是相关的。所以,大数据时代,分析问题的逻辑不再是因为 A,所以 B。而是有无数个相关条件,那么得出一个结论。这个结论只是可能性。数据越多,样本越多,相关性越多,这个可能性越高。但是,我们不能说,因为我是男的,所以我就要怎么样怎么样。所以,这是相关,而不是因果。

  • 33:
    好,我们都看了大数据的来源,大数据概念,对大数据的一些特性和一些思维上的改变。那么我们接下来看一下大数据相关的技术。
    我们会看一下,大数据的生态,相关大数据技术的主流厂商,从六个方向分析大数据所用的技术。一些组件。

  • 34:
    首先,我们来看大数据核心相关信息。
    我们要明确,广义上,大数据是一种概念,一种理论。同时,在狭义上,大家也习惯将大数据指为一种技术,也就是以 hadoop 为核心的生态。
    那么我们来看看这个生态系统。PPT

  • 35:
    我们看一下大数据生态的整体架构,我们从五个方面说。
    数据采集,就是获取数据,包括从数据库,日志,摄像头,一些数据流信息,甚至物联网设备,这些都是数据源。
    。。。。。。
    PPT
    可以看到,大数据的整个生态,是从实,到虚,又到实。是一个闭环。对,从用户的角度来说,看起来像是一个黑盒系统,和之前的关系型数据库,传统的处理,好像没有什么不同。但是实际上,我们做的比以前要多的多。

  • 36:
    接下来,我们看一下,现在大数据生态中,比较主流的大数据软件集成商是那些。
    主要有以下三家:PPT
    我们使用的是 Cloudera,点击看一下。

  • 37:
    我们看一下三家主流厂商的系统对比。
    今年,Hortonworks 的 Ambari 系统。 和 Cloudera 合并了。。。
    所以,以后 ambari 和 clouderaManager 可能就是一个了。。

  • 38:
    接下来,我们看一下,我们公司现有的大数据平台的架构。
    我们采用了 Cloudera 公司的方案,使用了 ClouderaManager 平台。
    大体架构如下:
    PPT

  • 39:
    接下来,我们从大数据获取的方向来看一下大数据的组件
    第一个是 sqoop,sqoop 是类似于 ETL 的一个工具组件。
    PPT

  • 40:
    接下来,我们看一下另一个数据获取组件 Flume,水槽。。
    它是由 Cloudra 贡献的。

  • 41:
    接下来,我们来看一个 hadoop 里非常重要的组件 HDFS,谷歌他们用的是 GFS 系统。
    PPT
    可以理解为 hadoop 是一个架子,你往里放什么砖,就会做出什么功能的建筑。

  • 42:
    念 PPT

  • 43:
    念 PPT

  • 44:
    关于无法存储小文件,HDFS 对大文件处理是很优秀的。但是大量小文件会导致运行效率变差。

  • 45:
    文件是被拆开,分别存储在不同的服务器硬盘上的。

  • 46:
    namenode 存的是目录,datanode 存的是文件。

  • 47:
    namenode 负责什么呢?

**中间部分 PPT 都为技术详细情况介绍,可以直接看 PPT

  • 92:
    京东的仓储体系,早几年前就使用了大数据的分析。会分析某个地区,将来可能会购买的物品,将其提前调配到最近的仓库。以达到快速配送的目的。所以京东敢喊次日达。当日达。

  • 93:
    阿里的智慧工厂系统,通过大数据 +AI,曾经给某个光伏长提高了 1% 的生产效率。提高了一个多亿的效益。

  • 大数据

    大数据(big data)是指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。

    93 引用 • 113 回帖 • 1 关注
  • PPT
    8 引用 • 34 回帖
  • 教程
    144 引用 • 626 回帖 • 8 关注

相关帖子

欢迎来到这里!

我们正在构建一个小众社区,大家在这里相互信任,以平等 • 自由 • 奔放的价值观进行分享交流。最终,希望大家能够找到与自己志同道合的伙伴,共同成长。

注册 关于
请输入回帖内容 ...
sq8852161
前端后端数据库,什么都要做的JAVA码农。( Ĭ ^ Ĭ )

推荐标签 标签

  • 架构

    我们平时所说的“架构”主要是指软件架构,这是有关软件整体结构与组件的抽象描述,用于指导软件系统各个方面的设计。另外还有“业务架构”、“网络架构”、“硬件架构”等细分领域。

    143 引用 • 442 回帖 • 2 关注
  • 锤子科技

    锤子科技(Smartisan)成立于 2012 年 5 月,是一家制造移动互联网终端设备的公司,公司的使命是用完美主义的工匠精神,打造用户体验一流的数码消费类产品(智能手机为主),改善人们的生活质量。

    4 引用 • 31 回帖 • 9 关注
  • TextBundle

    TextBundle 文件格式旨在应用程序之间交换 Markdown 或 Fountain 之类的纯文本文件时,提供更无缝的用户体验。

    1 引用 • 2 回帖 • 82 关注
  • Firefox

    Mozilla Firefox 中文俗称“火狐”(正式缩写为 Fx 或 fx,非正式缩写为 FF),是一个开源的网页浏览器,使用 Gecko 排版引擎,支持多种操作系统,如 Windows、OSX 及 Linux 等。

    7 引用 • 30 回帖 • 391 关注
  • 友情链接

    确认过眼神后的灵魂连接,站在链在!

    24 引用 • 373 回帖 • 1 关注
  • WiFiDog

    WiFiDog 是一套开源的无线热点认证管理工具,主要功能包括:位置相关的内容递送;用户认证和授权;集中式网络监控。

    1 引用 • 7 回帖 • 610 关注
  • RIP

    愿逝者安息!

    8 引用 • 92 回帖 • 396 关注
  • 音乐

    你听到信仰的声音了么?

    62 引用 • 512 回帖
  • iOS

    iOS 是由苹果公司开发的移动操作系统,最早于 2007 年 1 月 9 日的 Macworld 大会上公布这个系统,最初是设计给 iPhone 使用的,后来陆续套用到 iPod touch、iPad 以及 Apple TV 等产品上。iOS 与苹果的 Mac OS X 操作系统一样,属于类 Unix 的商业操作系统。

    88 引用 • 139 回帖
  • 反馈

    Communication channel for makers and users.

    126 引用 • 930 回帖 • 273 关注
  • 星云链

    星云链是一个开源公链,业内简单的将其称为区块链上的谷歌。其实它不仅仅是区块链搜索引擎,一个公链的所有功能,它基本都有,比如你可以用它来开发部署你的去中心化的 APP,你可以在上面编写智能合约,发送交易等等。3 分钟快速接入星云链 (NAS) 测试网

    3 引用 • 16 回帖
  • 链滴

    链滴是一个记录生活的地方。

    记录生活,连接点滴

    173 引用 • 3849 回帖
  • Maven

    Maven 是基于项目对象模型(POM)、通过一小段描述信息来管理项目的构建、报告和文档的软件项目管理工具。

    187 引用 • 318 回帖 • 256 关注
  • ActiveMQ

    ActiveMQ 是 Apache 旗下的一款开源消息总线系统,它完整实现了 JMS 规范,是一个企业级的消息中间件。

    19 引用 • 13 回帖 • 679 关注
  • MongoDB

    MongoDB(来自于英文单词“Humongous”,中文含义为“庞大”)是一个基于分布式文件存储的数据库,由 C++ 语言编写。旨在为应用提供可扩展的高性能数据存储解决方案。MongoDB 是一个介于关系数据库和非关系数据库之间的产品,是非关系数据库当中功能最丰富,最像关系数据库的。它支持的数据结构非常松散,是类似 JSON 的 BSON 格式,因此可以存储比较复杂的数据类型。

    90 引用 • 59 回帖 • 6 关注
  • 自由行
    6 关注
  • 大数据

    大数据(big data)是指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。

    93 引用 • 113 回帖
  • 快应用

    快应用 是基于手机硬件平台的新型应用形态;标准是由主流手机厂商组成的快应用联盟联合制定;快应用标准的诞生将在研发接口、能力接入、开发者服务等层面建设标准平台;以平台化的生态模式对个人开发者和企业开发者全品类开放。

    15 引用 • 127 回帖 • 1 关注
  • H2

    H2 是一个开源的嵌入式数据库引擎,采用 Java 语言编写,不受平台的限制,同时 H2 提供了一个十分方便的 web 控制台用于操作和管理数据库内容。H2 还提供兼容模式,可以兼容一些主流的数据库,因此采用 H2 作为开发期的数据库非常方便。

    11 引用 • 54 回帖 • 668 关注
  • Ant-Design

    Ant Design 是服务于企业级产品的设计体系,基于确定和自然的设计价值观上的模块化解决方案,让设计者和开发者专注于更好的用户体验。

    17 引用 • 23 回帖 • 3 关注
  • 心情

    心是产生任何想法的源泉,心本体会陷入到对自己本体不能理解的状态中,因为心能产生任何想法,不能分出对错,不能分出自己。

    59 引用 • 369 回帖 • 5 关注
  • 前端

    前端技术一般分为前端设计和前端开发,前端设计可以理解为网站的视觉设计,前端开发则是网站的前台代码实现,包括 HTML、CSS 以及 JavaScript 等。

    245 引用 • 1338 回帖
  • OkHttp

    OkHttp 是一款 HTTP & HTTP/2 客户端库,专为 Android 和 Java 应用打造。

    16 引用 • 6 回帖 • 85 关注
  • 微软

    微软是一家美国跨国科技公司,也是世界 PC 软件开发的先导,由比尔·盖茨与保罗·艾伦创办于 1975 年,公司总部设立在华盛顿州的雷德蒙德(Redmond,邻近西雅图)。以研发、制造、授权和提供广泛的电脑软件服务业务为主。

    8 引用 • 44 回帖
  • SMTP

    SMTP(Simple Mail Transfer Protocol)即简单邮件传输协议,它是一组用于由源地址到目的地址传送邮件的规则,由它来控制信件的中转方式。SMTP 协议属于 TCP/IP 协议簇,它帮助每台计算机在发送或中转信件时找到下一个目的地。

    4 引用 • 18 回帖 • 635 关注
  • 深度学习

    深度学习(Deep Learning)是机器学习的分支,是一种试图使用包含复杂结构或由多重非线性变换构成的多个处理层对数据进行高层抽象的算法。

    54 引用 • 41 回帖
  • App

    App(应用程序,Application 的缩写)一般指手机软件。

    91 引用 • 384 回帖