支持向量机(Support Vector Machine)由V.N. Vapnik,A.Y. Chervonenkis,C. Cortes 等在1964年提出。序列最小优化算法(Sequential minimal optimization)是一种用于解决支持向量机训练过程中所产生优化问题的算法。由John C. Platt于1998年提出。
支持向量机的推导在西瓜书,各大网站已经有详细的介绍。本文主要依据 John C. Platt 发表的文章《Sequential Minimal Optimization: A Fast Algorithm for Training Support Vector Machines》来实现 SVM 与 SMO 算法。
算法的流程:
import numpy as np from sklearn import datasets import matplotlib.pyplot as plt
定义需要的数据,包含数据样本,数据标签,偏置 b,拉格朗日乘子 α,容忍系数 C 等。
class Par: def __init__(self,n,D,C,eps,tol): self.X=datasets.make_blobs(n_samples=n,n_features=D,centers=2,cluster_std=1.0,shuffle=True,random_state=None) self.point=self.X[0] self.target=self.X[1] self.target[np.nonzero(self.target==0)[0]]=-1 self.w=np.zeros((1,D))[0] self.b=0 self.E=-self.target self.alpha=np.zeros((1,n))[0] self.n=n self.C=C self.eps=eps self.tol=tol
定义核函数,预测公式。
def kernel(x,y): return np.dot(x,y.T) def f(x): s=0 for i in range(n): s+=P.alpha[i]*P.target[i]*kernel(P.point[i],x) return s-P.b
被选中的一对 α 更新细节:
def takeStep(i1,i2): if i1==i2: return 0 alph2=P.alpha[i2] alph1=P.alpha[i1] y1=P.target[i1] y2=P.target[i2] s=y1*y2 #Compute L,H via equations (13) and (14) if y1!=y2: L=max(0,alph2-alph1) H=min(P.C,P.C+alph2-alph1) else: L=max(0,alph2+alph1-P.C) H=min(P.C,alph2+alph1) if L==H: return 0 k11=kernel(P.point[i1],P.point[i1]) k12=kernel(P.point[i1],P.point[i2]) k22=kernel(P.point[i2],P.point[i2]) eta=k11+k22-2*k12 if eta>0: a2=alph2+y2*(P.E[i1]-P.E[i2])/eta if a2<L: a2=L elif a2>H: a2=H else: f1=y1*(P.E[i1]+b)-alph1*k11-s*alph2*k12 f2=y2*(P.E[i2]+b)-s*alph1*k12-alph2*k22 L1=alph1+s*(alph2-L) H1=alph1+s*(alph2+H) psiL=L1*f1+L*f2+0.5*L1**2*k11+0.5*L**2*k22+s*L*L1*k12 psiH=H1*f1+H*f2+0.5*H1**2*k11+0.5*H**2*k22+s*H*H1*k12 Lobj = psiL Hobj = psiH if Lobj<Hobj-eps: a2=L elif Lobj>Hobj+eps: a2=H else: a2=alph2 if abs(a2-alph2)<P.eps*(a2+alph2+P.eps): return 0 a1=alph1+s*(alph2-a2) #Update threshold to reflect change in Lagrange multipliers b1=P.E[i1]+y1*(a1-alph1)*k11+y2*(a2-alph2)*k12+P.b b2=P.E[i2]+y1*(a1-alph1)*k12+y2*(a2-alph2)*k22+P.b if a1>0 and a1<P.C: P.b=b1 elif a2>0 and a2<P.C: P.b=b2 else: P.b=(b1+b2)/2 #Update weight vector to reflect change in a1 & a2, if SVM is linear P.w=P.w+y1*(a1-alph1)*P.point[i1]+y2*(a2-alph2)*P.point[i2] #Store a1 in the alpha array P.alpha[i1]=a1 #Store a2 in the alpha array P.alpha[i2]=a2 #Update error cache using new Lagrange multipliers P.E[i1]=f(P.point[i1])-P.target[i1] P.E[i2]=f(P.point[i2])-P.target[i2] return 1
内循环选择第二个 α:
def examineExample(i2): global valid alph2=P.alpha[i2] y2=P.target[i2] r2=P.E[i2]*y2 if (r2<-P.tol and alph2<P.C) or (r2>P.tol and alph2>0): valid=np.where((P.alpha!=0) & (P.alpha!=C))[0] Long=len(valid) if Long > 1: #i1 = result of second choice heuristic (section 2.2) best=-1 if len(valid)>1: for k in valid: deltaE=abs(P.E[i2]-P.E[k]) if deltaE>best: best=deltaE i1=k if takeStep(i1,i2): return 1 #loop over all non-zero and non-C alpha, starting at a random point if Long>0: random_index=np.random.randint(0,Long) for i in np.hstack((valid[random_index:Long],valid[0:random_index])): i1=i if takeStep(i1,i2): return 1 #loop over all possible i1, starting at a random point random_index=np.random.randint(0,n) for i in np.hstack((np.arange(random_index,n),np.arange(0,random_index))): #i1=loop variable i1=i if takeStep(i1,i2): return 1 return 0
外循环选择第一个 α:
def SMO(): global valid numChanged=0 examineAll=1 while numChanged>0 or examineAll: numChanged=0 if examineAll: for i in range(n): numChanged+=examineExample(i) else: #loop I over examples where alpha is not 0 & not C for i in valid: numChanged+=examineExample(i) if examineAll==1: examineAll=0 elif numChanged==0: examineAll=1
主函数入口:
if __name__ == '__main__': n=100 #样本个数 C=10 eps=0.001 #停止精度 tol=0.001 #分类容错率 D=2 #样本维度 P=Par(n,D,C,eps,tol) SMO() #绘制图像 plt.scatter(P.point[:,0],P.point[:,1],c=P.target) x=np.arange(-10,10,0.1) y=(P.b-P.w[0]*x)/P.w[1] plt.plot(x,y) plt.show() Y=kernel(P.point,P.w)-P.b count=0 for i in range(n): if Y[i]*P.target[i]<0: count+=1 print('Error Point num:',count)
单次测试结果:
欢迎来到这里!
我们正在构建一个小众社区,大家在这里相互信任,以平等 • 自由 • 奔放的价值观进行分享交流。最终,希望大家能够找到与自己志同道合的伙伴,共同成长。
注册 关于