在Hadoop中处理输入的CSV文件

本贴最后更新于 3028 天前,其中的信息可能已经东海扬尘

在Hadoop中,InputFormat类用来生成可供Mapper处理的<key, value>键值对。当数据传送给Mapper时,Mapper会将输入分片传送到InputFormat上,InputFormat调用getRecordReader()方法生成RecordReader,RecordReader再创建可供map函数处理的键值对<K1, V1>。

Hadoop预定义了多种方法将不同类型的输入数据转化为map能够处理的键值对。比如,TextInputFormat,Hadoop中默认的输入方法,会将每行数据生成一条记录,其中key值为每条记录在分片中的字节偏移量,value则为每行的内容。

在Hadoop预定义的InputFormat中,并没有处理CSV文件的方法。CSV文件的本质其实是用逗号分隔开的文本文件。一种很直观的处理方法是:将CSV文件作为文本文件处理,使用TextInputFormat将文件按行传入map函数,在map函数中再按照CSV文件的格式进行处理。但这样很容易将数据格式的处理逻辑与业务处理逻辑混淆在一起,并且出现很多copy-and-pasted的代码。

实际上,可以写一个自己的InputFormat以及RecordReader类,专门用来处理CSV文件的输入,直接传递给map函数解析后的数据。

1 数据结构

我们传递给map函数一个ArrayWritable(A Writable for arrays containing instances of a class),元素类型为Text,即CSV文件每一行各个字段的数据。数据结构如下:

代码1:TextArrayWritable.java

public class TextArrayWritable extends ArrayWritable {
    public TextArrayWritable() {
        super(Text.class);
    }
public TextArrayWritable(Text[] strings) {
    super(Text.class, strings);
}

}

2 CSVInputFormat

FileInputFormat是所有使用文件作为其数据源的InputFormat实现的基类。它提供了两个功能:一是定义哪些文件包含在一个作业的输入中,另一个是为输入文件生成分片(Input Splits)。而把分片分割成记录的事情交由其子类来完成。所以CSVInputFormat类的实现上,同样是继承InputFormat类,并只需要简单的重写createRecordReader和isSplitable即可。

代码2:CSVInputFormat.java

public class CSVInputFormat extends FileInputFormat<LongWritable, TextArrayWritable> {
    public static final String CSV_TOKEN_SEPARATOR_CONFIG = "csvinputformat.token.delimiter";
@Override
protected boolean isSplitable(JobContext context, Path filename) {
    CompressionCodec codec = new CompressionCodecFactory(context.getConfiguration()).getCodec(filename);

    return codec == null;
}

@Override
public RecordReader&lt;LongWritable, TextArrayWritable&gt; createRecordReader(
    InputSplit split, TaskAttemptContext context)
    throws IOException, InterruptedException {
    String csvDelimiter = context.getConfiguration()
                                 .get(CSV_TOKEN_SEPARATOR_CONFIG);
    Character separator = null;

    if ((csvDelimiter != null) &amp;&amp; (csvDelimiter.length() == 1)) {
        separator = csvDelimiter.charAt(0);
    }

    return new CSVRecordReader(separator);
}

}

其中csvinputformat.token.delimiter是可在配置文件中配置的CSV输入文件分隔符,createRecordReader完成的工作只是从配置文件中得到分隔符,调用真正对CSV文件分片进行处理,并生成键值对的CSVRecordReader函数,并返回RecordReader对象。

3 CSVRecordReader

对于CSVRecordReader,要实现的功能无非就是将CSV文件中每一行的各字段提取出来,并将各字段作为TextArrayWritable类型的数据结构传递给map函数。

在Hadoop中有一个LineRecordReader类,它将文本文件每一行的内容作为值返回,类型为Text。所以可以直接在CSVRecordReader中使用LineRecordReader,将LineRecordReader返回的每一行再次进行处理。在CSV文件的处理上,这里用到了OpenCSV对CSV文件的每一行进行解析,具体可参见这里。

下面是CSVRecordReader的实现代码。除了CSV文件的解析、nextKeyValue()方法和getCurrentValue()方法外,大部分方法都直接调用LineRecordReader实例的相应方法。毕竟我们是踩在巨人的肩膀上继续前进嘛。O(∩_∩)O~

代码3:CSVRecordReader.java

public class CSVRecordReader extends RecordReader<LongWritable, TextArrayWritable> {
    private LineRecordReader lineReader;
    private TextArrayWritable value;
    private CSVParser parser;
// 新建CSVParser实例,用来解析每一行CSV文件的每一行
public CSVRecordReader(Character delimiter) {
    this.lineReader = new LineRecordReader();

    if (delimiter == null) {
        this.parser = new CSVParser();
    } else {
        this.parser = new CSVParser(delimiter);
    }
}

// 调用LineRecordReader的初始化方法,寻找分片的开始位置
@Override
public void initialize(InputSplit split, TaskAttemptContext context)
    throws IOException, InterruptedException {
    lineReader.initialize(split, context);
}

// 使用LineRecordReader来得到下一条记录(即下一行)。
// 如果到了分片(Input Split)的尾部,nextKeyValue将返回NULL
@Override
public boolean nextKeyValue() throws IOException, InterruptedException {
    if (lineReader.nextKeyValue()) {
        //如果有新记录,则进行处理
        loadCSV();

        return true;
    } else {
        value = null;

        return false;
    }
}

@Override
public LongWritable getCurrentKey()
    throws IOException, InterruptedException {
    return lineReader.getCurrentKey();
}

@Override
public TextArrayWritable getCurrentValue()
    throws IOException, InterruptedException {
    return value;
}

@Override
public float getProgress() throws IOException, InterruptedException {
    return lineReader.getProgress();
}

@Override
public void close() throws IOException {
    lineReader.close();
}

// 对CSV文件的每一行进行处理
private void loadCSV() throws IOException {
    String line = lineReader.getCurrentValue().toString();

    // 通过OpenCSV将解析每一行的各字段
    String[] tokens = parser.parseLine(line);
    value = new TextArrayWritable(convert(tokens));
}

// 将字符串数组批量处理为Text数组
private Text[] convert(String[] tokens) {
    Text[] t = new Text[tokens.length];

    for (int i = 0; i &lt; t.length; i++) {
        t[i] = new Text(tokens[i]);
    }

    return t;
}

}

4 简单的应用

用于处理CSV文件输入的InputFormat已经写完了,现在构造一个简单的应用场景,来试验下这个CSVInputFormat。

假设有这样一些数据,每一列第一个字段为一个标识,后面为随机产生的数字,标识各不相同,求每一行标识后的数字之和并输出,输出格式为:每一行为标识和数字和。

 

由于标识没有重复,并且逻辑比较简单,这里只写一个Mapper即可,不需要Reducer。

代码4:CSVMapper.java

public class CSVMapper extends Mapper<LongWritable, TextArrayWritable, Text, IntWritable> {
    @Override
    protected void map(LongWritable key, TextArrayWritable value,
        Context context) throws IOException, InterruptedException {
        String[] values = value.toStrings();
        int sum = 0;
        Text resultKey = new Text(values[0]);
    for (int i = 1; i &lt; values.length; i++) {
        sum = sum + Integer.valueOf(values[i].trim());
    }

    IntWritable resultValue = new IntWritable(sum);
    context.write(resultKey, resultValue);
}

}

在作业的提交部分,由于没有Reducer,所以将ReduceTask设置为了0

代码5:JustRun.java

public class JustRun extends Configured implements Tool {
    @Override
    public int run(String[] args) throws Exception {
        Configuration conf = new Configuration();
    Job job = new Job(conf);
    job.setJobName("CSVTest");
    job.setJarByClass(JustRun.class);

    job.setMapperClass(CSVMapper.class);

    job.setOutputKeyClass(Text.class);
    job.setOutputValueClass(IntWritable.class);
    job.setInputFormatClass(CSVInputFormat.class);

    job.setNumReduceTasks(0);

    FileInputFormat.setInputPaths(job, new Path(args[0]));
    FileOutputFormat.setOutputPath(job, new Path(args[1]));

    return job.waitForCompletion(true) ? 0 : 1;
}

public static void main(String[] args) throws Exception {
    int ret = ToolRunner.run(new JustRun(), args);
    System.exit(ret);
}

}

执行完毕后,输出如下,跟预想是一致的。

好了,这就是利用InputFormat对CSV文件的处理过程。除了CSV文件,还可根据处理数据的类型,写出更多的InputFormat。同时,我们还可以利用OutputFormat输出需要的格式。

  • Hadoop

    Hadoop 是由 Apache 基金会所开发的一个分布式系统基础架构。用户可以在不了解分布式底层细节的情况下,开发分布式程序。充分利用集群的威力进行高速运算和存储。

    86 引用 • 122 回帖 • 625 关注

相关帖子

欢迎来到这里!

我们正在构建一个小众社区,大家在这里相互信任,以平等 • 自由 • 奔放的价值观进行分享交流。最终,希望大家能够找到与自己志同道合的伙伴,共同成长。

注册 关于
请输入回帖内容 ...

推荐标签 标签

  • 周末

    星期六到星期天晚,实行五天工作制后,指每周的最后两天。再过几年可能就是三天了。

    14 引用 • 297 回帖 • 1 关注
  • GAE

    Google App Engine(GAE)是 Google 管理的数据中心中用于 WEB 应用程序的开发和托管的平台。2008 年 4 月 发布第一个测试版本。目前支持 Python、Java 和 Go 开发部署。全球已有数十万的开发者在其上开发了众多的应用。

    14 引用 • 42 回帖 • 764 关注
  • OkHttp

    OkHttp 是一款 HTTP & HTTP/2 客户端库,专为 Android 和 Java 应用打造。

    16 引用 • 6 回帖 • 62 关注
  • ngrok

    ngrok 是一个反向代理,通过在公共的端点和本地运行的 Web 服务器之间建立一个安全的通道。

    7 引用 • 63 回帖 • 624 关注
  • 音乐

    你听到信仰的声音了么?

    60 引用 • 511 回帖 • 1 关注
  • Lute

    Lute 是一款结构化的 Markdown 引擎,支持 Go 和 JavaScript。

    25 引用 • 191 回帖 • 16 关注
  • 服务器

    服务器,也称伺服器,是提供计算服务的设备。由于服务器需要响应服务请求,并进行处理,因此一般来说服务器应具备承担服务并且保障服务的能力。

    125 引用 • 588 回帖
  • 自由行
    10 关注
  • Hibernate

    Hibernate 是一个开放源代码的对象关系映射框架,它对 JDBC 进行了非常轻量级的对象封装,使得 Java 程序员可以随心所欲的使用对象编程思维来操纵数据库。

    39 引用 • 103 回帖 • 709 关注
  • 服务

    提供一个服务绝不仅仅是简单的把硬件和软件累加在一起,它包括了服务的可靠性、服务的标准化、以及对服务的监控、维护、技术支持等。

    41 引用 • 24 回帖 • 2 关注
  • BAE

    百度应用引擎(Baidu App Engine)提供了 PHP、Java、Python 的执行环境,以及云存储、消息服务、云数据库等全面的云服务。它可以让开发者实现自动地部署和管理应用,并且提供动态扩容和负载均衡的运行环境,让开发者不用考虑高成本的运维工作,只需专注于业务逻辑,大大降低了开发者学习和迁移的成本。

    19 引用 • 75 回帖 • 641 关注
  • Android

    Android 是一种以 Linux 为基础的开放源码操作系统,主要使用于便携设备。2005 年由 Google 收购注资,并拉拢多家制造商组成开放手机联盟开发改良,逐渐扩展到到平板电脑及其他领域上。

    334 引用 • 323 回帖 • 2 关注
  • InfluxDB

    InfluxDB 是一个开源的没有外部依赖的时间序列数据库。适用于记录度量,事件及实时分析。

    2 引用 • 72 关注
  • Maven

    Maven 是基于项目对象模型(POM)、通过一小段描述信息来管理项目的构建、报告和文档的软件项目管理工具。

    186 引用 • 318 回帖 • 304 关注
  • 资讯

    资讯是用户因为及时地获得它并利用它而能够在相对短的时间内给自己带来价值的信息,资讯有时效性和地域性。

    55 引用 • 85 回帖 • 1 关注
  • 职场

    找到自己的位置,萌新烦恼少。

    127 引用 • 1705 回帖
  • QQ

    1999 年 2 月腾讯正式推出“腾讯 QQ”,在线用户由 1999 年的 2 人(马化腾和张志东)到现在已经发展到上亿用户了,在线人数超过一亿,是目前使用最广泛的聊天软件之一。

    45 引用 • 557 回帖 • 67 关注
  • Netty

    Netty 是一个基于 NIO 的客户端-服务器编程框架,使用 Netty 可以让你快速、简单地开发出一个可维护、高性能的网络应用,例如实现了某种协议的客户、服务端应用。

    49 引用 • 33 回帖 • 21 关注
  • Git

    Git 是 Linux Torvalds 为了帮助管理 Linux 内核开发而开发的一个开放源码的版本控制软件。

    209 引用 • 358 回帖 • 2 关注
  • 心情

    心是产生任何想法的源泉,心本体会陷入到对自己本体不能理解的状态中,因为心能产生任何想法,不能分出对错,不能分出自己。

    59 引用 • 369 回帖
  • 知乎

    知乎是网络问答社区,连接各行各业的用户。用户分享着彼此的知识、经验和见解,为中文互联网源源不断地提供多种多样的信息。

    10 引用 • 66 回帖
  • SendCloud

    SendCloud 由搜狐武汉研发中心孵化的项目,是致力于为开发者提供高质量的触发邮件服务的云端邮件发送平台,为开发者提供便利的 API 接口来调用服务,让邮件准确迅速到达用户收件箱并获得强大的追踪数据。

    2 引用 • 8 回帖 • 483 关注
  • SQLite

    SQLite 是一个进程内的库,实现了自给自足的、无服务器的、零配置的、事务性的 SQL 数据库引擎。SQLite 是全世界使用最为广泛的数据库引擎。

    5 引用 • 7 回帖
  • V2Ray
    1 引用 • 15 回帖 • 1 关注
  • GraphQL

    GraphQL 是一个用于 API 的查询语言,是一个使用基于类型系统来执行查询的服务端运行时(类型系统由你的数据定义)。GraphQL 并没有和任何特定数据库或者存储引擎绑定,而是依靠你现有的代码和数据支撑。

    4 引用 • 3 回帖 • 9 关注
  • 深度学习

    深度学习(Deep Learning)是机器学习的分支,是一种试图使用包含复杂结构或由多重非线性变换构成的多个处理层对数据进行高层抽象的算法。

    53 引用 • 40 回帖 • 1 关注
  • Hadoop

    Hadoop 是由 Apache 基金会所开发的一个分布式系统基础架构。用户可以在不了解分布式底层细节的情况下,开发分布式程序。充分利用集群的威力进行高速运算和存储。

    86 引用 • 122 回帖 • 625 关注