# 1. 堆排序
参考[出处][1]
## 1.1 二叉堆的定义
二叉堆是完全二叉树或者是近似完全二叉树。
二叉堆满足二个特性:
> * 父结点的键值总是大于或等于(小于或等于)任何一个子节点的键值。
> * 每个结点的左子树和右子树都是一个二叉堆(都是最大堆或最小堆)。
当父结点的键值总是大于或等于任何一个子节点的键值时为最大堆。当父结点的键值总是小于或等于任何一个子节点的键值时为最小堆。
## 1.2 堆的存储
一般都用数组来表示堆,i结点的父结点下标就为(i – 1) / 2。它的左右子结点下标分别为2 * i + 1和2 * i + 2。如第0个结点左右子结点下标分别为1和2。
## 1.3 堆的操作——插入删除
**堆的插入**
每次插入都是将新数据放在数组最后。可以发现从这个新数据的父结点到根结点必然为一个有序的数列,现在的任务是将这个新数据插入到这个有序数据中
**堆的删除**
按定义,堆中每次都只能删除第0个数据。为了便于重建堆,实际的操作是将最后一个数据的值赋给根结点,然后再从根结点开始进行一次从上向下的调整。调整时先在左右儿子结点中找最小的,如果父结点比这个最小的子结点还小说明不需要调整了,反之将父结点和它交换后再考虑后面的结点。相当于从根结点将一个数据的“下沉”过程。下面给出代码:
个人总结:
所以堆排序就是在堆的基础上来排序。
**堆化数组**
## 1.4 堆排序
首先可以看到堆建好之后堆中第0个数据是堆中最小的数据。取出这个数据再执行下堆的删除操作。这样堆中第0个数据又是堆中最小的数据,重复上述步骤直至堆中只有一个数据时就直接取出这个数据。
由于堆也是用数组模拟的,故堆化数组后,第一次将A[0]与A[n - 1]交换,再对A[0…n-2]重新恢复堆。第二次将A[0]与A[n – 2]交换,再对A[0…n - 3]重新恢复堆,重复这样的操作直到A[0]与A[1]交换。由于每次都是将最小的数据并入到后面的有序区间,故操作完成后整个数组就有序了。有点类似于直接选择排序。
## 1.5 时间复杂度分析
时间复杂度 O(nlogn), 空间复杂度O(1). 从这一点就可以看出,堆排序在时间上类似归并,但是它又是一种原地排序,时间复杂度小于归并的O(n+logn)
排序时间与输入无关,最好,最差,平均都是O(nlogn). 不稳定
堆排序借助了堆这个数据结构,堆类似二叉树,又具有堆积的性质(子节点的关键值总小于(大于)父节点)
堆排序包括两个主要操作:
保持堆的性质heapify(A,i)
时间复杂度O(logn)
建堆 buildmaxheap(A)
时间复杂度O(n)线性时间建堆
> 对于大数据的处理: 如果对100亿条数据选择Topk数据,选择快速排序好还是堆排序好? 答案是只能用堆排序。 堆排序只需要维护一个k大小的空间,即在内存开辟k大小的空间。而快速排序需要开辟能存储100亿条数据的空间,which is impossible.
# 2. 快速排序
## 2.1 算法步骤
快速排序是C.R.A.Hoare于1962年提出的一种划分交换排序。它采用了一种`分治的策略`,通常称其为`分治法(Divide-and-ConquerMethod)`。
该方法的基本思想是:
> 1.先从数列中取出一个数作为基准数。
2.分区过程,将比这个数大的数全放到它的右边,小于或等于它的数全放到它的左边。
3.再对左右区间重复第二步,直到各区间只有一个数。
```
static void quikSort(int s [], int l, int r) {
if (l < r) {
//Swap(s[l], s[(l + r) / 2]); //将中间的这个数和第一个数交换 参见注1
int i = l, j = r, x = s[l];
while (i < j) {
while(i < j && s[j] >= x) // 从右向左找第一个小于x的数
j--;
if(i < j)
s[i++] = s[j];
while(i < j && s[i] < x) // 从左向右找第一个大于等于x的数
i++;
if(i < j)
s[j--] = s[i];
}
s[i] = x;
quikSort(s, l, i - 1); // 递归调用
quikSort(s, i + 1, r);
}
}
```
## 2.2 算法复杂度分析
我们来分析一下快速排序法的性能。快速排序的时间性能取决于快速排序递归的深度,可以用递归树来描述递归算法的执行情况。如图9‐9‐7所示,它是{50,10,90,30, 70,40,80,60,20}在快速排序过程中的递归过程。由于我们的第一个关键字是50,正好是待排序的序列的中间值,因此递归树是平衡的,此时性能也比较好。
![此处输入图片的描述][2]
图9-9-7在最优情况下,Partition每次都划分得很均匀,如果排序n个关键字,其递归树的深度就为.log2n.+1(.x.表示不大于x的最大整数),即仅需递归log2n次,需要时间为T(n)的话,第一次Partiation应该是需要对整个数组扫描一遍,做n次比较。然后,获得的枢轴将数组一分为二,那么各自还需要T(n/2)的时间(注意是最好情况,所以平分两半)。于是不断地划分下去,我们就有了下面的不等式推断。
> T(n)≤2T(n/2) +n,T(1)=0
T(n)≤2(2T(n/4)+n/2) +n=4T(n/4)+2n
T(n)≤4(2T(n/8)+n/4) +2n=8T(n/8)+3n
……
T(n)≤nT(1)+(log2n)×n= O(nlogn)
也就是说,在最优的情况下,快速排序算法的时间复杂度为O(nlogn)。
在最坏的情况下,待排序的序列为正序或者逆序,每次划分只得到一个比上一次划分少一个记录的子序列,注意另一个为空。如果递归树画出来,它就是一棵斜树。此时需要执行n‐1次递归调用,且第i次划分需要经过n‐i次关键字的比较才能找到第i个记录,也就是枢轴的位置,因此比较次数为![此处输入图片的描述][3] ,最终其时间复杂度为O(n2)。
平均的情况,设枢轴的关键字应该在第k的位置(1≤k≤n),那么:
![此处输入图片的描述][4]
由数学归纳法可证明,其数量级为O(nlogn)。
就空间复杂度来说,主要是递归造成的栈空间的使用,最好情况,递归树的深度为log2n,其空间复杂度也就为O(logn),最坏情况,需要进行n‐1递归调用,其空间复杂度为O(n),平均情况,空间复杂度也为O(logn)。
可惜的是,由于关键字的比较和交换是跳跃进行的,因此,快速排序是一种不稳定的排序方法。
# 3. 冒泡排序
冒泡排序是非常容易理解和实现,,以从小到大排序举例:
## 3.1 冒泡排序概述
> 设数组长度为N。
1.比较相邻的前后二个数据,如果前面数据大于后面的数据,就将二个数据交换。
2.这样对数组的第0个数据到N-1个数据进行一次遍历后,最大的一个数据就“沉”到数组第N-1个位置。
3.N=N-1,如果N不为0就重复前面二步,否则排序完成。
## 3.2 冒泡排序代码实现
```
//冒泡排序3
void BubbleSort3(int a[], int n)
{
int j, k;
int flag;
flag = n;
while (flag > 0)
{
k = flag;
flag = 0;
for (j = 1; j < k; j++)
if (a[j - 1] > a[j])
{
Swap(a[j - 1], a[j]);
flag = j;
}
}
}
```
## 3.3 冒泡排序时间复杂度
时间复杂度O(n^2), 空间复杂度O(1), 稳定,因为存在两两比较,不存在跳跃。
排序时间与输入无关,最好,最差,平均都是O(n^2)。数据小时可以作为排序方式。
[1]: http://blog.csdn.net/morewindows/article/details/6709644
[2]: http://images.51cto.com/files/uploadimg/20110826/222536597.jpg
[3]: http://images.51cto.com/files/uploadimg/20110826/222653304.jpg
[4]: http://images.51cto.com/files/uploadimg/20110826/222801489.jpg
近期热议
推荐标签 标签
- 30Seconds
-
强迫症
15 引用 • 161 回帖
强迫症(OCD)属于焦虑障碍的一种类型,是一组以强迫思维和强迫行为为主要临床表现的神经精神疾病,其特点为有意识的强迫和反强迫并存,一些毫无意义、甚至违背自己意愿的想法或冲动反反复复侵入患者的日常生活。
-
DevOps
59 引用 • 25 回帖 • 2 关注
DevOps(Development 和 Operations 的组合词)是一组过程、方法与系统的统称,用于促进开发(应用程序/软件工程)、技术运营和质量保障(QA)部门之间的沟通、协作与整合。
-
CSS
198 引用 • 543 回帖 • 3 关注
CSS(Cascading Style Sheet)“层叠样式表”是用于控制网页样式并允许将样式信息与网页内容分离的一种标记性语言。
-
MySQL
694 引用 • 537 回帖 • 5 关注
MySQL 是一个关系型数据库管理系统,由瑞典 MySQL AB 公司开发,目前属于 Oracle 公司。MySQL 是最流行的关系型数据库管理系统之一。
-
Gzip
9 引用 • 12 回帖 • 185 关注
gzip (GNU zip)是 GNU 自由软件的文件压缩程序。我们在 Linux 中经常会用到后缀为 .gz 的文件,它们就是 Gzip 格式的。现今已经成为互联网上使用非常普遍的一种数据压缩格式,或者说一种文件格式。
-
IDEA
181 引用 • 400 回帖
IDEA 全称 IntelliJ IDEA,是一款 Java 语言开发的集成环境,在业界被公认为最好的 Java 开发工具之一。IDEA 是 JetBrains 公司的产品,这家公司总部位于捷克共和国的首都布拉格,开发人员以严谨著称的东欧程序员为主。
-
HHKB
5 引用 • 74 回帖 • 521 关注
HHKB 是富士通的 Happy Hacking 系列电容键盘。电容键盘即无接点静电电容式键盘(Capacitive Keyboard)。
-
WiFiDog
1 引用 • 7 回帖 • 615 关注
WiFiDog 是一套开源的无线热点认证管理工具,主要功能包括:位置相关的内容递送;用户认证和授权;集中式网络监控。
-
安装
132 引用 • 1184 回帖 • 1 关注
你若安好,便是晴天。
-
GitHub
209 引用 • 2040 回帖
GitHub 于 2008 年上线,目前,除了 Git 代码仓库托管及基本的 Web 管理界面以外,还提供了订阅、讨论组、文本渲染、在线文件编辑器、协作图谱(报表)、代码片段分享(Gist)等功能。正因为这些功能所提供的便利,又经过长期的积累,GitHub 的用户活跃度很高,在开源世界里享有深远的声望,并形成了社交化编程文化(Social Coding)。
-
SSL
70 引用 • 193 回帖 • 409 关注
SSL(Secure Sockets Layer 安全套接层),及其继任者传输层安全(Transport Layer Security,TLS)是为网络通信提供安全及数据完整性的一种安全协议。TLS 与 SSL 在传输层对网络连接进行加密。
-
招聘
188 引用 • 1057 回帖
哪里都缺人,哪里都不缺人。
-
阿里云
85 引用 • 324 回帖
阿里云是阿里巴巴集团旗下公司,是全球领先的云计算及人工智能科技公司。提供云服务器、云数据库、云安全等云计算服务,以及大数据、人工智能服务、精准定制基于场景的行业解决方案。
-
Flutter
39 引用 • 92 回帖 • 12 关注
Flutter 是谷歌的移动 UI 框架,可以快速在 iOS 和 Android 上构建高质量的原生用户界面。 Flutter 可以与现有的代码一起工作,它正在被越来越多的开发者和组织使用,并且 Flutter 是完全免费、开源的。
-
webpack
42 引用 • 130 回帖 • 253 关注
webpack 是一个用于前端开发的模块加载器和打包工具,它能把各种资源,例如 JS、CSS(less/sass)、图片等都作为模块来使用和处理。
-
Vim
29 引用 • 66 回帖 • 1 关注
Vim 是类 UNIX 系统文本编辑器 Vi 的加强版本,加入了更多特性来帮助编辑源代码。Vim 的部分增强功能包括文件比较(vimdiff)、语法高亮、全面的帮助系统、本地脚本(Vimscript)和便于选择的可视化模式。
-
Word
13 引用 • 41 回帖
-
Telegram
5 引用 • 35 回帖
Telegram 是一个非盈利性、基于云端的即时消息服务。它提供了支持各大操作系统平台的开源的客户端,也提供了很多强大的 APIs 给开发者创建自己的客户端和机器人。
-
外包
26 引用 • 233 回帖 • 1 关注
有空闲时间是接外包好呢还是学习好呢?
-
SOHO
7 引用 • 55 回帖 • 5 关注
为成为自由职业者在家办公而努力吧!
-
导航
45 引用 • 177 回帖
各种网址链接、内容导航。
-
又拍云
20 引用 • 37 回帖 • 571 关注
又拍云是国内领先的 CDN 服务提供商,国家工信部认证通过的“可信云”,乌云众测平台认证的“安全云”,为移动时代的创业者提供新一代的 CDN 加速服务。
-
浅吟主题
1 引用 • 31 回帖
Jeffrey Chen 制作的思源笔记主题,项目仓库:https://github.com/TCOTC/Whisper
-
LeetCode
209 引用 • 72 回帖 • 1 关注
LeetCode(力扣)是一个全球极客挚爱的高质量技术成长平台,想要学习和提升专业能力从这里开始,充足技术干货等你来啃,轻松拿下 Dream Offer!
-
Git
211 引用 • 358 回帖
Git 是 Linux Torvalds 为了帮助管理 Linux 内核开发而开发的一个开放源码的版本控制软件。
-
flomo
6 引用 • 143 回帖
flomo 是新一代 「卡片笔记」 ,专注在碎片化时代,促进你的记录,帮你积累更多知识资产。
欢迎来到这里!
我们正在构建一个小众社区,大家在这里相互信任,以平等 • 自由 • 奔放的价值观进行分享交流。最终,希望大家能够找到与自己志同道合的伙伴,共同成长。
注册 关于