董西成 -2.1(2) 简易电影受众系统

本贴最后更新于 3119 天前,其中的信息可能已经渤澥桑田

1、首先下载分析文件网址为:http://grouplens.org/datasets/movielens/(MovieLens 1M Dataset 中的这个包 ml-1m.zip)

2、部分文件如下:

movies.dat:

1::Toy Story (1995)::Animation|Children's|Comedy
2::Jumanji (1995)::Adventure|Children's|Fantasy
3::Grumpier Old Men (1995)::Comedy|Romance
4::Waiting to Exhale (1995)::Comedy|Drama
5::Father of the Bride Part II (1995)::Comedy
6::Heat (1995)::Action|Crime|Thriller
7::Sabrina (1995)::Comedy|Romance
8::Tom and Huck (1995)::Adventure|Children's
9::Sudden Death (1995)::Action
10::GoldenEye (1995)::Action|Adventure|Thriller
11::American President, The (1995)::Comedy|Drama|Romance
12::Dracula: Dead and Loving It (1995)::Comedy|Horror
13::Balto (1995)::Animation|Children's
14::Nixon (1995)::Drama
15::Cutthroat Island (1995)::Action|Adventure|Romance
16::Casino (1995)::Drama|Thriller
17::Sense and Sensibility (1995)::Drama|Romance
18::Four Rooms (1995)::Thriller
19::Ace Ventura: When Nature Calls (1995)::Comedy
20::Money Train (1995)::Action
21::Get Shorty (1995)::Action|Comedy|Drama
22::Copycat (1995)::Crime|Drama|Thriller
23::Assassins (1995)::Thriller
24::Powder (1995)::Drama|Sci-Fi
25::Leaving Las Vegas (1995)::Drama|Romance
26::Othello (1995)::Drama
27::Now and Then (1995)::Drama
28::Persuasion (1995)::Romance
29::City of Lost Children, The (1995)::Adventure|Sci-Fi
30::Shanghai Triad (Yao a yao yao dao waipo qiao) (1995)::Drama
31::Dangerous Minds (1995)::Drama

ratings.dat

1::1193::5::978300760
1::661::3::978302109
1::914::3::978301968
1::3408::4::978300275
1::2355::5::978824291
1::1197::3::978302268
1::1287::5::978302039
1::2804::5::978300719
1::594::4::978302268
1::919::4::978301368
1::595::5::978824268
1::938::4::978301752
1::2398::4::978302281
1::2918::4::978302124
1::1035::5::978301753
1::2791::4::978302188
1::2687::3::978824268
1::2018::4::978301777
1::3105::5::978301713
1::2797::4::978302039
1::2321::3::978302205
1::720::3::978300760
1::1270::5::978300055
1::527::5::978824195
1::2340::3::978300103

users.dat

1::F::1::10::48067
2::M::56::16::70072
3::M::25::15::55117
4::M::45::7::02460
5::M::25::20::55455
6::F::50::9::55117
7::M::35::1::06810
8::M::25::12::11413
9::M::25::17::61614
10::F::35::1::95370
11::F::25::1::04093
12::M::25::12::32793
13::M::45::1::93304
14::M::35::0::60126
15::M::25::7::22903
16::F::35::0::20670
17::M::50::1::95350
18::F::18::3::95825
19::M::1::10::48073
20::M::25::14::55113
21::M::18::16::99353
22::M::18::15::53706
23::M::35::0::90049
24::F::25::7::10023
25::M::18::4::01609
26::M::25::7::23112
27::M::25::11::19130
28::F::25::1::14607
29::M::35::7::33407
package org.training.spark.core

import org.apache.spark._

/**
 * 看过“Lord of the Rings, The (1978)”用户年龄和性别分布
 */
object MovieUserAnalyzer {
  def main(args: Array[String]) {
    var masterUrl = "local[1]"
    var dataPath = "data/ml-1m/"
    if (args.length > 0) {
      masterUrl = args(0)
    } else if(args.length > 1) {
      dataPath = args(1)
    }

    // Create a SparContext with the given master URL
    val conf = new SparkConf().setMaster(masterUrl).setAppName("MovieUserAnalyzer")
    val sc = new SparkContext(conf)

    /**
     * Step 1: Create RDDs
     */
    val DATA_PATH = dataPath
    val MOVIE_TITLE = "Lord of the Rings, The (1978)"
    val MOVIE_ID = "2116"


    val usersRdd = sc.textFile(DATA_PATH + "users.dat")
    val ratingsRdd = sc.textFile(DATA_PATH + "ratings.dat")


    /**
     * Step 2: Extract columns from RDDs
     */


    //users: RDD[(userID, (gender, age))]
    val users = usersRdd.map(_.split("::")).map { x =>
      (x(0), (x(1), x(2)))
    }

    //rating: RDD[Array(userID, movieID, ratings, timestamp)]
    val rating = ratingsRdd.map(_.split("::"))

    //usermovie: RDD[(userID, movieID)]
    val usermovie = rating.map{ x =>
      (x(0), x(1))
    }.filter(_._2.equals(MOVIE_ID))

    /**
     * Step 3: join RDDs
     */

    //useRating: RDD[(userID, (movieID, (gender, age))]
    val userRating = usermovie.join(users)

    //userRating.take(1).foreach(print)


    //movieuser: RDD[(movieID, (movieTile, (gender, age))]
    val userDistribution = userRating.map { x =>
      (x._2._2, 1)
    }.reduceByKey(_ + _)

    userDistribution.foreach(println)

    sc.stop()
  }
}
package org.training.spark.core

import org.apache.spark._

import scala.collection.immutable.HashSet

/**
 * 年龄段在“18-24”的男性年轻人,最喜欢看哪10部电影
 */
object PopularMovieAnalyzer {
  def main(args: Array[String]) {
    var masterUrl = "local[1]"
    var dataPath = "data/ml-1m/"
    if (args.length > 0) {
      masterUrl = args(0)
    } else if(args.length > 1) {
      dataPath = args(1)
    }

    // Create a SparContext with the given master URL
    val conf = new SparkConf().setMaster(masterUrl).setAppName("PopularMovieAnalyzer")
    val sc = new SparkContext(conf)

    /**
     * Step 1: Create RDDs
     */
    val DATA_PATH = dataPath
    val USER_AGE = "18"


    val usersRdd = sc.textFile(DATA_PATH + "users.dat")
    val moviesRdd = sc.textFile(DATA_PATH + "movies.dat")
    val ratingsRdd = sc.textFile(DATA_PATH + "ratings.dat")

    /**
     * Step 2: Extract columns from RDDs
     */


    //users: RDD[(userID, age)]
    val users = usersRdd.map(_.split("::")).map { x =>
      (x(0), x(2))
    }.filter(_._2.equals(USER_AGE))

    //Array[String]
    val userlist = users.map(_._1).collect()

    //broadcast
    val userSet = HashSet() ++ userlist
    val broadcastUserSet = sc.broadcast(userSet)


    /**
     * Step 3: map-side join RDDs
     */

    val topKmovies = ratingsRdd.map(_.split("::")).map{ x =>
      (x(0), x(1))
    }.filter { x =>
      broadcastUserSet.value.contains(x._1)
    }.map{ x=>
      (x._2, 1)
    }.reduceByKey(_ + _).map{ x =>
      (x._2, x._1)
    }.sortByKey(false).map{ x=>
      (x._2, x._1)
    }.take(10)

    /**
     * Transfrom filmID to fileName
     */
    val movieID2Name = moviesRdd.map(_.split("::")).map { x =>
      (x(0), x(1))
    }.collect().toMap

    topKmovies.map(x => (movieID2Name.getOrElse(x._1, null), x._2)).foreach(println)

    println(System.currentTimeMillis())

    sc.stop()
  }
}
package org.training.spark.core

import org.apache.spark._

import scala.collection.immutable.HashSet

/**
 * 得分最高的10部电影;看过电影最多的前10个人;女性看多最多的10部电影;男性看过最多的10部电影
 */
object TopKMovieAnalyzer {
  def main(args: Array[String]) {
    var masterUrl = "local[1]"
    var dataPath = "data/ml-1m/"
    if (args.length > 0) {
      masterUrl = args(0)
    } else if(args.length > 1) {
      dataPath = args(1)
    }

    // Create a SparContext with the given master URL
    val conf = new SparkConf().setMaster(masterUrl).setAppName("TopKMovieAnalyzer")
    val sc = new SparkContext(conf)

    /**
     * Step 1: Create RDDs
     */
    val DATA_PATH = dataPath

    val ratingsRdd = sc.textFile(DATA_PATH + "ratings.dat")

    /**
     * Step 2: Extract columns from RDDs
     */

    //users: RDD[(userID, movieID, score)]
    val ratings = ratingsRdd.map(_.split("::")).map { x =>
      (x(0), x(1), x(2))
    }.cache


    /**
     * Step 3: analyze result
     */

    val topKScoreMostMovie = ratings.map{x =>
      (x._2, (x._3.toInt, 1))
    }.reduceByKey { (v1, v2) =>
      (v1._1 + v2._1, v1._2 + v2._2)
    }.map { x =>
      (x._2._1.toFloat / x._2._2.toFloat, x._1)
    }.sortByKey(false).
        take(10).
        foreach(println)


    val topKmostPerson = ratings.map{ x =>
      (x._1, 1)
    }.reduceByKey(_ + _).
        map(x => (x._2, x._1)).
        sortByKey(false).
        take(10).
        foreach(println)

    sc.stop()
  }
}

 

  • 代码
    467 引用 • 586 回帖 • 9 关注
  • 电影

    这是一个不能说的秘密。

    122 引用 • 608 回帖 • 1 关注

相关帖子

欢迎来到这里!

我们正在构建一个小众社区,大家在这里相互信任,以平等 • 自由 • 奔放的价值观进行分享交流。最终,希望大家能够找到与自己志同道合的伙伴,共同成长。

注册 关于
请输入回帖内容 ...

推荐标签 标签

  • 域名

    域名(Domain Name),简称域名、网域,是由一串用点分隔的名字组成的 Internet 上某一台计算机或计算机组的名称,用于在数据传输时标识计算机的电子方位(有时也指地理位置)。

    43 引用 • 208 回帖
  • Latke

    Latke 是一款以 JSON 为主的 Java Web 框架。

    71 引用 • 535 回帖 • 830 关注
  • AWS
    11 引用 • 28 回帖 • 8 关注
  • 单点登录

    单点登录(Single Sign On)是目前比较流行的企业业务整合的解决方案之一。SSO 的定义是在多个应用系统中,用户只需要登录一次就可以访问所有相互信任的应用系统。

    9 引用 • 25 回帖 • 1 关注
  • WiFiDog

    WiFiDog 是一套开源的无线热点认证管理工具,主要功能包括:位置相关的内容递送;用户认证和授权;集中式网络监控。

    1 引用 • 7 回帖 • 609 关注
  • 架构

    我们平时所说的“架构”主要是指软件架构,这是有关软件整体结构与组件的抽象描述,用于指导软件系统各个方面的设计。另外还有“业务架构”、“网络架构”、“硬件架构”等细分领域。

    143 引用 • 442 回帖 • 1 关注
  • 开源

    Open Source, Open Mind, Open Sight, Open Future!

    412 引用 • 3588 回帖 • 1 关注
  • GitBook

    GitBook 使您的团队可以轻松编写和维护高质量的文档。 分享知识,提高团队的工作效率,让用户满意。

    3 引用 • 8 回帖
  • Flume

    Flume 是一套分布式的、可靠的,可用于有效地收集、聚合和搬运大量日志数据的服务架构。

    9 引用 • 6 回帖 • 655 关注
  • DNSPod

    DNSPod 建立于 2006 年 3 月份,是一款免费智能 DNS 产品。 DNSPod 可以为同时有电信、网通、教育网服务器的网站提供智能的解析,让电信用户访问电信的服务器,网通的用户访问网通的服务器,教育网的用户访问教育网的服务器,达到互联互通的效果。

    6 引用 • 26 回帖 • 529 关注
  • 百度

    百度(Nasdaq:BIDU)是全球最大的中文搜索引擎、最大的中文网站。2000 年 1 月由李彦宏创立于北京中关村,致力于向人们提供“简单,可依赖”的信息获取方式。“百度”二字源于中国宋朝词人辛弃疾的《青玉案·元夕》词句“众里寻他千百度”,象征着百度对中文信息检索技术的执著追求。

    63 引用 • 785 回帖 • 93 关注
  • JWT

    JWT(JSON Web Token)是一种用于双方之间传递信息的简洁的、安全的表述性声明规范。JWT 作为一个开放的标准(RFC 7519),定义了一种简洁的,自包含的方法用于通信双方之间以 JSON 的形式安全的传递信息。

    20 引用 • 15 回帖 • 22 关注
  • 数据库

    据说 99% 的性能瓶颈都在数据库。

    345 引用 • 747 回帖
  • Follow
    4 引用 • 12 回帖 • 12 关注
  • iOS

    iOS 是由苹果公司开发的移动操作系统,最早于 2007 年 1 月 9 日的 Macworld 大会上公布这个系统,最初是设计给 iPhone 使用的,后来陆续套用到 iPod touch、iPad 以及 Apple TV 等产品上。iOS 与苹果的 Mac OS X 操作系统一样,属于类 Unix 的商业操作系统。

    89 引用 • 150 回帖
  • Ant-Design

    Ant Design 是服务于企业级产品的设计体系,基于确定和自然的设计价值观上的模块化解决方案,让设计者和开发者专注于更好的用户体验。

    17 引用 • 23 回帖 • 1 关注
  • Love2D

    Love2D 是一个开源的, 跨平台的 2D 游戏引擎。使用纯 Lua 脚本来进行游戏开发。目前支持的平台有 Windows, Mac OS X, Linux, Android 和 iOS。

    14 引用 • 53 回帖 • 555 关注
  • flomo

    flomo 是新一代 「卡片笔记」 ,专注在碎片化时代,促进你的记录,帮你积累更多知识资产。

    6 引用 • 143 回帖 • 2 关注
  • HTML

    HTML5 是 HTML 下一个的主要修订版本,现在仍处于发展阶段。广义论及 HTML5 时,实际指的是包括 HTML、CSS 和 JavaScript 在内的一套技术组合。

    108 引用 • 295 回帖
  • 前端

    前端技术一般分为前端设计和前端开发,前端设计可以理解为网站的视觉设计,前端开发则是网站的前台代码实现,包括 HTML、CSS 以及 JavaScript 等。

    246 引用 • 1338 回帖
  • GAE

    Google App Engine(GAE)是 Google 管理的数据中心中用于 WEB 应用程序的开发和托管的平台。2008 年 4 月 发布第一个测试版本。目前支持 Python、Java 和 Go 开发部署。全球已有数十万的开发者在其上开发了众多的应用。

    14 引用 • 42 回帖 • 811 关注
  • 服务器

    服务器,也称伺服器,是提供计算服务的设备。由于服务器需要响应服务请求,并进行处理,因此一般来说服务器应具备承担服务并且保障服务的能力。

    125 引用 • 585 回帖
  • Tomcat

    Tomcat 最早是由 Sun Microsystems 开发的一个 Servlet 容器,在 1999 年被捐献给 ASF(Apache Software Foundation),隶属于 Jakarta 项目,现在已经独立为一个顶级项目。Tomcat 主要实现了 JavaEE 中的 Servlet、JSP 规范,同时也提供 HTTP 服务,是市场上非常流行的 Java Web 容器。

    162 引用 • 529 回帖
  • Kotlin

    Kotlin 是一种在 Java 虚拟机上运行的静态类型编程语言,由 JetBrains 设计开发并开源。Kotlin 可以编译成 Java 字节码,也可以编译成 JavaScript,方便在没有 JVM 的设备上运行。在 Google I/O 2017 中,Google 宣布 Kotlin 成为 Android 官方开发语言。

    19 引用 • 33 回帖 • 74 关注
  • Hexo

    Hexo 是一款快速、简洁且高效的博客框架,使用 Node.js 编写。

    22 引用 • 148 回帖 • 16 关注
  • frp

    frp 是一个可用于内网穿透的高性能的反向代理应用,支持 TCP、UDP、 HTTP 和 HTTPS 协议。

    20 引用 • 7 回帖 • 2 关注
  • Sandbox

    如果帖子标签含有 Sandbox ,则该帖子会被视为“测试帖”,主要用于测试社区功能,排查 bug 等,该标签下内容不定期进行清理。

    432 引用 • 1250 回帖 • 596 关注