董西成 -2.1(2) 简易电影受众系统

本贴最后更新于 2949 天前,其中的信息可能已经渤澥桑田

1、首先下载分析文件网址为:http://grouplens.org/datasets/movielens/(MovieLens 1M Dataset 中的这个包 ml-1m.zip)

2、部分文件如下:

movies.dat:

1::Toy Story (1995)::Animation|Children's|Comedy
2::Jumanji (1995)::Adventure|Children's|Fantasy
3::Grumpier Old Men (1995)::Comedy|Romance
4::Waiting to Exhale (1995)::Comedy|Drama
5::Father of the Bride Part II (1995)::Comedy
6::Heat (1995)::Action|Crime|Thriller
7::Sabrina (1995)::Comedy|Romance
8::Tom and Huck (1995)::Adventure|Children's
9::Sudden Death (1995)::Action
10::GoldenEye (1995)::Action|Adventure|Thriller
11::American President, The (1995)::Comedy|Drama|Romance
12::Dracula: Dead and Loving It (1995)::Comedy|Horror
13::Balto (1995)::Animation|Children's
14::Nixon (1995)::Drama
15::Cutthroat Island (1995)::Action|Adventure|Romance
16::Casino (1995)::Drama|Thriller
17::Sense and Sensibility (1995)::Drama|Romance
18::Four Rooms (1995)::Thriller
19::Ace Ventura: When Nature Calls (1995)::Comedy
20::Money Train (1995)::Action
21::Get Shorty (1995)::Action|Comedy|Drama
22::Copycat (1995)::Crime|Drama|Thriller
23::Assassins (1995)::Thriller
24::Powder (1995)::Drama|Sci-Fi
25::Leaving Las Vegas (1995)::Drama|Romance
26::Othello (1995)::Drama
27::Now and Then (1995)::Drama
28::Persuasion (1995)::Romance
29::City of Lost Children, The (1995)::Adventure|Sci-Fi
30::Shanghai Triad (Yao a yao yao dao waipo qiao) (1995)::Drama
31::Dangerous Minds (1995)::Drama

ratings.dat

1::1193::5::978300760
1::661::3::978302109
1::914::3::978301968
1::3408::4::978300275
1::2355::5::978824291
1::1197::3::978302268
1::1287::5::978302039
1::2804::5::978300719
1::594::4::978302268
1::919::4::978301368
1::595::5::978824268
1::938::4::978301752
1::2398::4::978302281
1::2918::4::978302124
1::1035::5::978301753
1::2791::4::978302188
1::2687::3::978824268
1::2018::4::978301777
1::3105::5::978301713
1::2797::4::978302039
1::2321::3::978302205
1::720::3::978300760
1::1270::5::978300055
1::527::5::978824195
1::2340::3::978300103

users.dat

1::F::1::10::48067
2::M::56::16::70072
3::M::25::15::55117
4::M::45::7::02460
5::M::25::20::55455
6::F::50::9::55117
7::M::35::1::06810
8::M::25::12::11413
9::M::25::17::61614
10::F::35::1::95370
11::F::25::1::04093
12::M::25::12::32793
13::M::45::1::93304
14::M::35::0::60126
15::M::25::7::22903
16::F::35::0::20670
17::M::50::1::95350
18::F::18::3::95825
19::M::1::10::48073
20::M::25::14::55113
21::M::18::16::99353
22::M::18::15::53706
23::M::35::0::90049
24::F::25::7::10023
25::M::18::4::01609
26::M::25::7::23112
27::M::25::11::19130
28::F::25::1::14607
29::M::35::7::33407
package org.training.spark.core

import org.apache.spark._

/**
 * 看过“Lord of the Rings, The (1978)”用户年龄和性别分布
 */
object MovieUserAnalyzer {
  def main(args: Array[String]) {
    var masterUrl = "local[1]"
    var dataPath = "data/ml-1m/"
    if (args.length > 0) {
      masterUrl = args(0)
    } else if(args.length > 1) {
      dataPath = args(1)
    }

    // Create a SparContext with the given master URL
    val conf = new SparkConf().setMaster(masterUrl).setAppName("MovieUserAnalyzer")
    val sc = new SparkContext(conf)

    /**
     * Step 1: Create RDDs
     */
    val DATA_PATH = dataPath
    val MOVIE_TITLE = "Lord of the Rings, The (1978)"
    val MOVIE_ID = "2116"


    val usersRdd = sc.textFile(DATA_PATH + "users.dat")
    val ratingsRdd = sc.textFile(DATA_PATH + "ratings.dat")


    /**
     * Step 2: Extract columns from RDDs
     */


    //users: RDD[(userID, (gender, age))]
    val users = usersRdd.map(_.split("::")).map { x =>
      (x(0), (x(1), x(2)))
    }

    //rating: RDD[Array(userID, movieID, ratings, timestamp)]
    val rating = ratingsRdd.map(_.split("::"))

    //usermovie: RDD[(userID, movieID)]
    val usermovie = rating.map{ x =>
      (x(0), x(1))
    }.filter(_._2.equals(MOVIE_ID))

    /**
     * Step 3: join RDDs
     */

    //useRating: RDD[(userID, (movieID, (gender, age))]
    val userRating = usermovie.join(users)

    //userRating.take(1).foreach(print)


    //movieuser: RDD[(movieID, (movieTile, (gender, age))]
    val userDistribution = userRating.map { x =>
      (x._2._2, 1)
    }.reduceByKey(_ + _)

    userDistribution.foreach(println)

    sc.stop()
  }
}
package org.training.spark.core

import org.apache.spark._

import scala.collection.immutable.HashSet

/**
 * 年龄段在“18-24”的男性年轻人,最喜欢看哪10部电影
 */
object PopularMovieAnalyzer {
  def main(args: Array[String]) {
    var masterUrl = "local[1]"
    var dataPath = "data/ml-1m/"
    if (args.length > 0) {
      masterUrl = args(0)
    } else if(args.length > 1) {
      dataPath = args(1)
    }

    // Create a SparContext with the given master URL
    val conf = new SparkConf().setMaster(masterUrl).setAppName("PopularMovieAnalyzer")
    val sc = new SparkContext(conf)

    /**
     * Step 1: Create RDDs
     */
    val DATA_PATH = dataPath
    val USER_AGE = "18"


    val usersRdd = sc.textFile(DATA_PATH + "users.dat")
    val moviesRdd = sc.textFile(DATA_PATH + "movies.dat")
    val ratingsRdd = sc.textFile(DATA_PATH + "ratings.dat")

    /**
     * Step 2: Extract columns from RDDs
     */


    //users: RDD[(userID, age)]
    val users = usersRdd.map(_.split("::")).map { x =>
      (x(0), x(2))
    }.filter(_._2.equals(USER_AGE))

    //Array[String]
    val userlist = users.map(_._1).collect()

    //broadcast
    val userSet = HashSet() ++ userlist
    val broadcastUserSet = sc.broadcast(userSet)


    /**
     * Step 3: map-side join RDDs
     */

    val topKmovies = ratingsRdd.map(_.split("::")).map{ x =>
      (x(0), x(1))
    }.filter { x =>
      broadcastUserSet.value.contains(x._1)
    }.map{ x=>
      (x._2, 1)
    }.reduceByKey(_ + _).map{ x =>
      (x._2, x._1)
    }.sortByKey(false).map{ x=>
      (x._2, x._1)
    }.take(10)

    /**
     * Transfrom filmID to fileName
     */
    val movieID2Name = moviesRdd.map(_.split("::")).map { x =>
      (x(0), x(1))
    }.collect().toMap

    topKmovies.map(x => (movieID2Name.getOrElse(x._1, null), x._2)).foreach(println)

    println(System.currentTimeMillis())

    sc.stop()
  }
}
package org.training.spark.core

import org.apache.spark._

import scala.collection.immutable.HashSet

/**
 * 得分最高的10部电影;看过电影最多的前10个人;女性看多最多的10部电影;男性看过最多的10部电影
 */
object TopKMovieAnalyzer {
  def main(args: Array[String]) {
    var masterUrl = "local[1]"
    var dataPath = "data/ml-1m/"
    if (args.length > 0) {
      masterUrl = args(0)
    } else if(args.length > 1) {
      dataPath = args(1)
    }

    // Create a SparContext with the given master URL
    val conf = new SparkConf().setMaster(masterUrl).setAppName("TopKMovieAnalyzer")
    val sc = new SparkContext(conf)

    /**
     * Step 1: Create RDDs
     */
    val DATA_PATH = dataPath

    val ratingsRdd = sc.textFile(DATA_PATH + "ratings.dat")

    /**
     * Step 2: Extract columns from RDDs
     */

    //users: RDD[(userID, movieID, score)]
    val ratings = ratingsRdd.map(_.split("::")).map { x =>
      (x(0), x(1), x(2))
    }.cache


    /**
     * Step 3: analyze result
     */

    val topKScoreMostMovie = ratings.map{x =>
      (x._2, (x._3.toInt, 1))
    }.reduceByKey { (v1, v2) =>
      (v1._1 + v2._1, v1._2 + v2._2)
    }.map { x =>
      (x._2._1.toFloat / x._2._2.toFloat, x._1)
    }.sortByKey(false).
        take(10).
        foreach(println)


    val topKmostPerson = ratings.map{ x =>
      (x._1, 1)
    }.reduceByKey(_ + _).
        map(x => (x._2, x._1)).
        sortByKey(false).
        take(10).
        foreach(println)

    sc.stop()
  }
}

 

  • 代码
    466 引用 • 631 回帖 • 9 关注
  • 电影

    这是一个不能说的秘密。

    120 引用 • 599 回帖

相关帖子

欢迎来到这里!

我们正在构建一个小众社区,大家在这里相互信任,以平等 • 自由 • 奔放的价值观进行分享交流。最终,希望大家能够找到与自己志同道合的伙伴,共同成长。

注册 关于
请输入回帖内容 ...

推荐标签 标签

  • WebComponents

    Web Components 是 W3C 定义的标准,它给了前端开发者扩展浏览器标签的能力,可以方便地定制可复用组件,更好的进行模块化开发,解放了前端开发者的生产力。

    1 引用
  • C++

    C++ 是在 C 语言的基础上开发的一种通用编程语言,应用广泛。C++ 支持多种编程范式,面向对象编程、泛型编程和过程化编程。

    107 引用 • 153 回帖
  • wolai

    我来 wolai:不仅仅是未来的云端笔记!

    2 引用 • 14 回帖
  • Openfire

    Openfire 是开源的、基于可拓展通讯和表示协议 (XMPP)、采用 Java 编程语言开发的实时协作服务器。Openfire 的效率很高,单台服务器可支持上万并发用户。

    6 引用 • 7 回帖 • 94 关注
  • RIP

    愿逝者安息!

    8 引用 • 92 回帖 • 351 关注
  • 京东

    京东是中国最大的自营式电商企业,2015 年第一季度在中国自营式 B2C 电商市场的占有率为 56.3%。2014 年 5 月,京东在美国纳斯达克证券交易所正式挂牌上市(股票代码:JD),是中国第一个成功赴美上市的大型综合型电商平台,与腾讯、百度等中国互联网巨头共同跻身全球前十大互联网公司排行榜。

    14 引用 • 102 回帖 • 376 关注
  • 机器学习

    机器学习(Machine Learning)是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。

    83 引用 • 37 回帖 • 1 关注
  • 面试

    面试造航母,上班拧螺丝。多面试,少加班。

    325 引用 • 1395 回帖
  • TGIF

    Thank God It's Friday! 感谢老天,总算到星期五啦!

    287 引用 • 4484 回帖 • 669 关注
  • V2EX

    V2EX 是创意工作者们的社区。这里目前汇聚了超过 400,000 名主要来自互联网行业、游戏行业和媒体行业的创意工作者。V2EX 希望能够成为创意工作者们的生活和事业的一部分。

    17 引用 • 236 回帖 • 327 关注
  • GAE

    Google App Engine(GAE)是 Google 管理的数据中心中用于 WEB 应用程序的开发和托管的平台。2008 年 4 月 发布第一个测试版本。目前支持 Python、Java 和 Go 开发部署。全球已有数十万的开发者在其上开发了众多的应用。

    14 引用 • 42 回帖 • 764 关注
  • 学习

    “梦想从学习开始,事业从实践起步” —— 习近平

    169 引用 • 506 回帖
  • SOHO

    为成为自由职业者在家办公而努力吧!

    7 引用 • 55 回帖 • 19 关注
  • JRebel

    JRebel 是一款 Java 虚拟机插件,它使得 Java 程序员能在不进行重部署的情况下,即时看到代码的改变对一个应用程序带来的影响。

    26 引用 • 78 回帖 • 664 关注
  • 酷鸟浏览器

    安全 · 稳定 · 快速
    为跨境从业人员提供专业的跨境浏览器

    3 引用 • 59 回帖 • 26 关注
  • 区块链

    区块链是分布式数据存储、点对点传输、共识机制、加密算法等计算机技术的新型应用模式。所谓共识机制是区块链系统中实现不同节点之间建立信任、获取权益的数学算法 。

    91 引用 • 751 回帖 • 2 关注
  • 职场

    找到自己的位置,萌新烦恼少。

    127 引用 • 1705 回帖 • 1 关注
  • Gitea

    Gitea 是一个开源社区驱动的轻量级代码托管解决方案,后端采用 Go 编写,采用 MIT 许可证。

    4 引用 • 16 回帖 • 5 关注
  • Unity

    Unity 是由 Unity Technologies 开发的一个让开发者可以轻松创建诸如 2D、3D 多平台的综合型游戏开发工具,是一个全面整合的专业游戏引擎。

    25 引用 • 7 回帖 • 173 关注
  • 前端

    前端技术一般分为前端设计和前端开发,前端设计可以理解为网站的视觉设计,前端开发则是网站的前台代码实现,包括 HTML、CSS 以及 JavaScript 等。

    247 引用 • 1348 回帖
  • JavaScript

    JavaScript 一种动态类型、弱类型、基于原型的直译式脚本语言,内置支持类型。它的解释器被称为 JavaScript 引擎,为浏览器的一部分,广泛用于客户端的脚本语言,最早是在 HTML 网页上使用,用来给 HTML 网页增加动态功能。

    729 引用 • 1327 回帖
  • SEO

    发布对别人有帮助的原创内容是最好的 SEO 方式。

    35 引用 • 200 回帖 • 22 关注
  • 房星科技

    房星网,我们不和没有钱的程序员谈理想,我们要让程序员又有理想又有钱。我们有雄厚的房地产行业线下资源,遍布昆明全城的 100 家门店、四千地产经纪人是我们坚实的后盾。

    6 引用 • 141 回帖 • 585 关注
  • 以太坊

    以太坊(Ethereum)并不是一个机构,而是一款能够在区块链上实现智能合约、开源的底层系统。以太坊是一个平台和一种编程语言 Solidity,使开发人员能够建立和发布下一代去中心化应用。 以太坊可以用来编程、分散、担保和交易任何事物:投票、域名、金融交易所、众筹、公司管理、合同和知识产权等等。

    34 引用 • 367 回帖
  • MySQL

    MySQL 是一个关系型数据库管理系统,由瑞典 MySQL AB 公司开发,目前属于 Oracle 公司。MySQL 是最流行的关系型数据库管理系统之一。

    690 引用 • 535 回帖
  • Sym

    Sym 是一款用 Java 实现的现代化社区(论坛/BBS/社交网络/博客)系统平台。

    下一代的社区系统,为未来而构建

    524 引用 • 4601 回帖 • 700 关注
  • SendCloud

    SendCloud 由搜狐武汉研发中心孵化的项目,是致力于为开发者提供高质量的触发邮件服务的云端邮件发送平台,为开发者提供便利的 API 接口来调用服务,让邮件准确迅速到达用户收件箱并获得强大的追踪数据。

    2 引用 • 8 回帖 • 483 关注